Open Access

The need for a coordinated action to elucidate ecological occurrence and functions of endophytic fungal communities


Cite

Abdel-Latef, A. A. H., Hashem, A., Rasool, S., Abd_Allah, E. F., Alqarawi, A. A., Egamberdieva, D., Jan, S., Anjum, N. A., and Ahmad, P. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. Journal of Plant Biology, 59, 407–426. Abdel-LatefA. A. H. HashemA. RasoolS. Abd_AllahE. F. AlqarawiA. A. EgamberdievaD. JanS. AnjumN. A. AhmadP. 2016 Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review Journal of Plant Biology 59 407 426 10.1007/s12374-016-0237-7Search in Google Scholar

Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biology Reviews, 21, 51–66. ArnoldA. E. 2007 Understanding the diversity of foliar endophytic fungi: Progress, challenges, and frontiers Fungal Biology Reviews 21 51 66 10.1016/j.fbr.2007.05.003Search in Google Scholar

Barelli, L., Moonjely, S., Behie, S. W., and Bidochka, M. J. (2016). Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Molecular Biology, 90, 657–664. BarelliL. MoonjelyS. BehieS. W. BidochkaM. J. 2016 Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi Plant Molecular Biology 90 657 664 10.1007/s11103-015-0413-z26644135Search in Google Scholar

Behie, S. W., Zelisko, P. M., and Bidochka, M. J. (2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 336, 1576–1577. BehieS. W. ZeliskoP. M. BidochkaM. J. 2012 Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants Science 336 1576 1577 10.1126/science.122228922723421Search in Google Scholar

Bhumika, N. B., Swapnil, M. P., and Sanjay, P. G. (2016). Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biology, 120, 819–894. BhumikaN. B. SwapnilM. P. SanjayP. G. 2016 Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana Fungal Biology 120 819 894 Search in Google Scholar

Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., MA, L. J., and Sessitsch, A. (2017). Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology, 55, 61–83. BraderG. CompantS. VescioK. MitterB. TrognitzF. MAL. J. SessitschA. 2017 Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes Annual Review of Phytopathology 55 61 83 10.1146/annurev-phyto-080516-03564128489497Search in Google Scholar

Busby, P. E., Ridout, M., and Newcombe, G. (2016). Fungal endophytes: Modifiers of plant disease. Plant Molecular Biology, 90, 645–655. BusbyP. E. RidoutM. NewcombeG. 2016 Fungal endophytes: Modifiers of plant disease Plant Molecular Biology 90 645 655 10.1007/s11103-015-0412-026646287Search in Google Scholar

Carrieri, R., Lahoz, E., and Nicoletti, R. (2014). Widespread endophytic occurrence of Phomopsis theicola (teleomorph Diaporthe foeniculina) at the Astroni Nature Reserve. Journal of Plant Pathology, 96, S4.46. CarrieriR. LahozE. NicolettiR. 2014 Widespread endophytic occurrence of Phomopsis theicola (teleomorph Diaporthe foeniculina) at the Astroni Nature Reserve Journal of Plant Pathology 96 S4.46 Search in Google Scholar

Caruso, G., Abdelhamid, M. T., Kalisz, A., and Sekara, A. (2020). Linking endophytic fungi to medicinal plants therapeutic activity. A case study on Asteraceae. Agriculture, 10, 286, doi: 10.3390/agriculture10070286. CarusoG. AbdelhamidM. T. KaliszA. SekaraA. 2020 Linking endophytic fungi to medicinal plants therapeutic activity. A case study on Asteraceae Agriculture 10 286 10.3390/agriculture10070286 Open DOISearch in Google Scholar

Conley, C. A., Ishkhanova, G., Mckay, C. P., and Cullungs, K. (2006). A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology, 6, 521–526. ConleyC. A. IshkhanovaG. MckayC. P. CullungsK. 2006 A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile Astrobiology 6 521 526 10.1089/ast.2006.6.52116916279Search in Google Scholar

De Bary, A. (1866). Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Leipzig, Germany: Engelmann. De BaryA. 1866 Morphologie und Physiologie der Pilze, Flechten und Myxomyceten Leipzig, Germany Engelmann Search in Google Scholar

Deng, Z., and Cao, L. (2017). Fungal endophytes and their interactions with plants in phytoremediation: A review. Chemosphere, 168, 1100–1106. DengZ. CaoL. 2017 Fungal endophytes and their interactions with plants in phytoremediation: A review Chemosphere 168 1100 1106 10.1016/j.chemosphere.2016.10.09728029384Search in Google Scholar

Devarajan, P. T., and Suryanarayanan, T. S. (2006). Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Diversity, 23, 111–119. DevarajanP. T. SuryanarayananT. S. 2006 Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes Fungal Diversity 23 111 119 Search in Google Scholar

Di Menna, M. E., Finch, S. C., Popay, A. J., and Smith, B. L. (2012). A review of the Neotyphodium lolii/Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers. New Zealand Veterinary Journal, 60, 315–328. Di MennaM. E. FinchS. C. PopayA. J. SmithB. L. 2012 A review of the Neotyphodium lolii/Lolium perenne symbiosis and its associated effects on animal and plant health, with particular emphasis on ryegrass staggers New Zealand Veterinary Journal 60 315 328 10.1080/00480169.2012.69742922913513Search in Google Scholar

Eberl, F., Uhe, C., and Unsicker, S. B. (2019). Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. Fungal Ecology, 38, 104–112. EberlF. UheC. UnsickerS. B. 2019 Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions Fungal Ecology 38 104 112 10.1016/j.funeco.2018.04.003Search in Google Scholar

Fitzpatrick, D. A. (2012). Horizontal gene transfer in fungi. FEMS Microbiology Letters, 329, 1–8. FitzpatrickD. A. 2012 Horizontal gene transfer in fungi FEMS Microbiology Letters 329 1 8 10.1111/j.1574-6968.2011.02465.x22112233Search in Google Scholar

González-teuber, M., Vilo, C., and Bascuñán-godoy, L. (2017). Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genomics Data, 11, 109–112. González-teuberM. ViloC. Bascuñán-godoyL. 2017 Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile Genomics Data 11 109 112 10.1016/j.gdata.2016.12.015523378828116242Search in Google Scholar

Grum, D. S., Cook, D., Baucom, D., Mott, I. W., Gardner, D. R., Creamer, R., and Allen, J. G. (2013). Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens. Journal of Natural Products, 76, 1984–1988. GrumD. S. CookD. BaucomD. MottI. W. GardnerD. R. CreamerR. AllenJ. G. 2013 Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens Journal of Natural Products 76 1984 1988 10.1021/np400274n24053110Search in Google Scholar

Guevara-suarez, M., García, D., Cano-Lira, J. F., Guarro, J., and Gené, J. (2020). Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of penicillium-like fungi in Aspergillaceae. Fungal Systematics and Evolution, 5, 39–75. Guevara-suarezM. GarcíaD. Cano-LiraJ. F. GuarroJ. GenéJ. 2020 Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of penicillium-like fungi in Aspergillaceae Fungal Systematics and Evolution 5 39 75 10.3114/fuse.2020.05.03725002032467914Search in Google Scholar

Gupta, S., Chaturvedi, P., Kulkarni, M. G., and Van Staden, J. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnology Advances, 39, 107462, doi: 10.1016/j.biotechadv.2019.107462 GuptaS. ChaturvediP. KulkarniM. G. Van StadenJ. 2020 A critical review on exploiting the pharmaceutical potential of plant endophytic fungi Biotechnology Advances 39 107462 10.1016/j.biotechadv.2019.10746231669137Open DOISearch in Google Scholar

Hartley, S. E., and Gange, A. C. (2009). Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annual Review of Entomology, 54, 323–342. HartleyS. E. GangeA. C. 2009 Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context Annual Review of Entomology 54 323 342 10.1146/annurev.ento.54.110807.09061419067635Search in Google Scholar

Hodgson, S., De cates, C., Hodgson, J., Morley, N. J., Sutton, B. C., and Gange, A. C. (2014). Vertical transmission of fungal endophytes is widespread in forbs. Ecology and Evolution, 4, 1199–1208. HodgsonS. De catesC. HodgsonJ. MorleyN. J. SuttonB. C. GangeA. C. 2014 Vertical transmission of fungal endophytes is widespread in forbs Ecology and Evolution 4 1199 1208 10.1002/ece3.953402068224834319Search in Google Scholar

Hoffman, M. T., and Arnold, A. E. (2010). Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Applied and Environmental Microbiology, 76, 4063–4075. HoffmanM. T. ArnoldA. E. 2010 Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes Applied and Environmental Microbiology 76 4063 4075 10.1128/AEM.02928-09289348820435775Search in Google Scholar

Hyde, K. D., and Soytong, K. (2008). The fungal endophyte dilemma. Fungal Diversity, 33, 163–173. HydeK. D. SoytongK. 2008 The fungal endophyte dilemma Fungal Diversity 33 163 173 Search in Google Scholar

Jia, M., Chen, L., Xin, H. L., Zheng, C. J., Rahman, K., Han, T., and Qin, L. P. (2016). A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Frontiers in Microbiology, 7, 906, doi: 10.3389/fmicb.2016.00906. JiaM. ChenL. XinH. L. ZhengC. J. RahmanK. HanT. QinL. P. 2016 A friendly relationship between endophytic fungi and medicinal plants: A systematic review Frontiers in Microbiology 7 906 10.3389/fmicb.2016.00906 489946127375610Open DOISearch in Google Scholar

Jumpponen, A., Herrera, J., Porras-alfaro, A., and Rudgers, J. (2017). Biogeography of root-associated fungal endophytes. In L. Tedersoo (Ed.), Biogeography of mycorrhizal symbiosis (pp. 195–222). Cham, Switzerland: Springer. JumpponenA. HerreraJ. Porras-alfaroA. RudgersJ. 2017 Biogeography of root-associated fungal endophytes In TedersooL. (Ed.), Biogeography of mycorrhizal symbiosis 195 222 Cham, Switzerland Springer 10.1007/978-3-319-56363-3_10Search in Google Scholar

Kessler, D. E., Andrade, G. A., Peña Cañón, E. R., Paidano Alves, R., Schmitz, D., Schünemann, A. L., Pereira De Albuquerque, M., Putzke, J., Pereira, A. B., and De Carvalho Victoria, F. (2018). First record of Juncaceicola as endophytic fungi associated with Deschampsia antarctica Desv. Diversity, 10(4), 107, doi: 10.3390/d10040107. KesslerD. E. AndradeG. A. Peña CañónE. R. Paidano AlvesR. SchmitzD. SchünemannA. L. Pereira De AlbuquerqueM. PutzkeJ. PereiraA. B. De Carvalho VictoriaF. 2018 First record of Juncaceicola as endophytic fungi associated with Deschampsia antarctica Desv Diversity 10 4 107 10.3390/d10040107 Open DOISearch in Google Scholar

Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., and Lee, I. J. (2015). Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology, 35, 62–74. KhanA. L. HussainJ. Al-HarrasiA. Al-RawahiA. LeeI. J. 2015 Endophytic fungi: resource for gibberellins and crop abiotic stress resistance Critical Reviews in Biotechnology 35 62 74 10.3109/07388551.2013.80001823984800Search in Google Scholar

Kuldau, G., and Bacon, C. (2008). Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control, 46, 57–71. KuldauG. BaconC. 2008 Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses Biological Control 46 57 71 10.1016/j.biocontrol.2008.01.023Search in Google Scholar

Lau, M. K., Arnold, A. E., and Johnson, N. C. (2013). Factors influencing communities of foliar fungal endophytes in riparian woody plants. Fungal Ecology, 6, 365–378. LauM. K. ArnoldA. E. JohnsonN. C. 2013 Factors influencing communities of foliar fungal endophytes in riparian woody plants Fungal Ecology 6 365 378 10.1016/j.funeco.2013.06.003Search in Google Scholar

Ludwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37, 1325–1334. Ludwig-MüllerJ. 2015 Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters 37 1325 1334 10.1007/s10529-015-1814-425792513Search in Google Scholar

Lugtenberg, B. J., Caradus, J. R., and Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92(12), fiw194, doi: 10.1093/femsec/fiw194. LugtenbergB. J. CaradusJ. R. JohnsonL. J. 2016 Fungal endophytes for sustainable crop production FEMS Microbiology Ecology 92 12 fiw194 10.1093/femsec/fiw194 27624083Open DOISearch in Google Scholar

Luo, H., Xie, L., Zeng, J., and Xie, J. (2015). Biosynthesis and regulation of bioprotective alkaloids in the gramineae endophytic fungi with implications for herbivores deterrents. Current Microbiology, 71, 719–724. LuoH. XieL. ZengJ. XieJ. 2015 Biosynthesis and regulation of bioprotective alkaloids in the gramineae endophytic fungi with implications for herbivores deterrents Current Microbiology 71 719 724 10.1007/s00284-015-0906-726349576Search in Google Scholar

Manganiello, G., Marra, R., Staropoli, A., Lombardi, N., Vinale, F., and Nicoletti, R. (2019). The shifting mycotoxin profiles of endophytic Fusarium strains: A case study. Agriculture, 9, 143, doi: 10.3390/agriculture9070143. ManganielloG. MarraR. StaropoliA. LombardiN. VinaleF. NicolettiR. 2019 The shifting mycotoxin profiles of endophytic Fusarium strains: A case study Agriculture 9 143 10.3390/agriculture9070143 Open DOISearch in Google Scholar

Marsberg, A., Kemler, M., Jami, F., Nagel, J. H., Postma-Smidt, A., Naidoo, S., Wingfield, M. J., Crous, P. W., Spatafora, J. W., Hesse, C. N., Robbertse, B., and Slippers, B. (2017). Botryosphaeria dothidea: A latent pathogen of global importance to woody plant health. Molecular Plant Pathology, 18, 477–488. MarsbergA. KemlerM. JamiF. NagelJ. H. Postma-SmidtA. NaidooS. WingfieldM. J. CrousP. W. SpataforaJ. W. HesseC. N. RobbertseB. SlippersB. 2017 Botryosphaeria dothidea: A latent pathogen of global importance to woody plant health Molecular Plant Pathology 18 477 488 10.1111/mpp.12495663829227682468Search in Google Scholar

Mcclennan, E. (1920). The endophytic fungus of Lolium. Part I. Proceedings of the Royal Society, Victoria (NSW), 11, 252–301. McclennanE. 1920 The endophytic fungus of Lolium. Part I Proceedings of the Royal Society, Victoria (NSW) 11 252 301 Search in Google Scholar

Mejía, L. C., Herre, E. A., Sparks, J. P., Winter, K., García, M. N., van Bael, S.A., Stitt, J., Shi, Z., Zhang, Y., Guiltinan, M. J., and Maximova, S. N. (2014). Pervasive effects of a dominant foliar endophytic fungus on host genetic phenotypic expression in a tropical tree. Frontiers in Microbiology, 5, 479, doi: 10.3389/fmicb.2014.00479. MejíaL. C. HerreE. A. SparksJ. P. WinterK. GarcíaM. N. van BaelS.A. StittJ. ShiZ. ZhangY. GuiltinanM. J. MaximovaS. N. 2014 Pervasive effects of a dominant foliar endophytic fungus on host genetic phenotypic expression in a tropical tree Frontiers in Microbiology 5 479 10.3389/fmicb.2014.00479 416235625309519Open DOISearch in Google Scholar

Miller, J. D., Cherid, H., Sumarah, M. W., and Adams, G. W. (2009). Horizontal transmission of the Picea glauca foliar endophyte Phialocephala scopiformis CBS 120377. Fungal Ecology, 2, 98–101. MillerJ. D. CheridH. SumarahM. W. AdamsG. W. 2009 Horizontal transmission of the Picea glauca foliar endophyte Phialocephala scopiformis CBS 120377 Fungal Ecology 2 98 101 10.1016/j.funeco.2009.01.002Search in Google Scholar

Naik, S., Shaanker, R. U., Ravikanth, G., and Dayanandan, S. (2019). How and why do endophytes produce plant secondary metabolites? Symbiosis, 78, 193–201. NaikS. ShaankerR. U. RavikanthG. DayanandanS. 2019 How and why do endophytes produce plant secondary metabolites? Symbiosis 78 193 201 10.1007/s13199-019-00614-6Search in Google Scholar

Nicoletti, R. (2019). Endophytic fungi of citrus plants. Agriculture, 9, 247, doi: 10.3390/agriculture9120247. NicolettiR. 2019 Endophytic fungi of citrus plants Agriculture 9 247 10.3390/agriculture9120247 Open DOISearch in Google Scholar

Nicoletti, R., Di Vaio, C., and Cirillo, C. (2020). Endophytic fungi of olive tree. Microorganisms, 8(9), 1321, doi: 10.3390/microorganisms8091321. NicolettiR. Di VaioC. CirilloC. 2020 Endophytic fungi of olive tree Microorganisms 8 9 1321 10.3390/microorganisms8091321 756553132872625Open DOISearch in Google Scholar

Nicoletti, R., Fiorentino, A. (2015). Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture, 5, 918–970. NicolettiR. FiorentinoA. 2015 Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta Agriculture 5 918 970 10.3390/agriculture5040918Search in Google Scholar

Nicoletti, R., Salvatore, M. M., Ferranti, P., and Andolfi, A. (2018). Structures and bioactive properties of myrtucommulones and related acylphloroglucinols from Myrtaceae. Molecules, 23, 3370, doi: 10.3390/molecules23123370. NicolettiR. SalvatoreM. M. FerrantiP. AndolfiA. 2018 Structures and bioactive properties of myrtucommulones and related acylphloroglucinols from Myrtaceae Molecules 23 3370 10.3390/molecules23123370 632105130572614Open DOISearch in Google Scholar

Panaccione, D. G., Beaulieu, W. T., and Cook, D. (2014). Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecology, 28, 299–314. PanaccioneD. G. BeaulieuW. T. CookD. 2014 Bioactive alkaloids in vertically transmitted fungal endophytes Functional Ecology 28 299 314 10.1111/1365-2435.12076Search in Google Scholar

Partida-Martinez, L. P., and Hertweck, C. (2007). A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. ChemBioChem, 8, 41–45. Partida-MartinezL. P. HertweckC. 2007 A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus ChemBioChem 8 41 45 10.1002/cbic.20060039317154220Search in Google Scholar

Porras-Alfaro, A., and Bayman, P. (2011). Hidden fungi, emergent properties: Endophytes and microbiomes. Annual Review of Phytopathology, 49, 291–315. Porras-AlfaroA. BaymanP. 2011 Hidden fungi, emergent properties: Endophytes and microbiomes Annual Review of Phytopathology 49 291 315 10.1146/annurev-phyto-080508-08183119400639Search in Google Scholar

Rodriguez, R. J., White Jr, J. F., Arnold, A. E., and Redman, A. R. A. (2009). Fungal endophytes: Diversity and functional roles. New Phytologist, 182, 314–330. RodriguezR. J. WhiteJ. F.Jr ArnoldA. E. RedmanA. R. A. 2009 Fungal endophytes: Diversity and functional roles New Phytologist 182 314 330 10.1111/j.1469-8137.2009.02773.xSearch in Google Scholar

Rosa, L. H., Almeida vieira, M. D. L., Santiago, I. F., Rosa, C. A. (2010). Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiology Ecology, 73, 178–189. RosaL. H. Almeida vieiraM. D. L. SantiagoI. F. RosaC. A. 2010 Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica FEMS Microbiology Ecology 73 178 189 10.1111/j.1574-6941.2010.00872.xSearch in Google Scholar

Rosa, L. H., VAZ, A. B., Caligiorne, R. B., Campolina, S., and Rosa, C. A. (2009). Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biology 32, 161–167. RosaL. H. VAZA. B. CaligiorneR. B. CampolinaS. RosaC. A. 2009 Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae) Polar Biology 32 161 167 10.1007/s00300-008-0515-zSearch in Google Scholar

Saikkonen, K. (2007). Forest structure and fungal endophytes. Fungal Biology Reviews, 21, 67–74. SaikkonenK. 2007 Forest structure and fungal endophytes Fungal Biology Reviews 21 67 74 10.1016/j.fbr.2007.05.001Search in Google Scholar

Salvatore, M. M., Andolfi, A., and Nicoletti, R. (2020). The thin line between pathogenicity and endophytism: The case of Lasiodiplodia theobromae. Agriculture, 10(10), 488, doi: 10.3390/agriculture10100488. SalvatoreM. M. AndolfiA. NicolettiR. 2020 The thin line between pathogenicity and endophytism: The case of Lasiodiplodia theobromae Agriculture 10 10 488 10.3390/agriculture10100488 Open DOISearch in Google Scholar

Sampson, K. (1935). The presence and absence of an endophytic fungus in Lolium temulentum and L. perenne. Transactions of the British Mycological Society, 19, 337–343. SampsonK. 1935 The presence and absence of an endophytic fungus in Lolium temulentum and L. perenne Transactions of the British Mycological Society 19 337 343 10.1016/S0007-1536(35)80031-4Search in Google Scholar

Sanchez Márquez, S., Bills, G. F., Herrero, N., and Zabalgogeazcoa, I. (2012). Non-systemic fungal endophytes of grasses. Fungal Ecology, 5, 289–297. Sanchez MárquezS. BillsG. F. HerreroN. ZabalgogeazcoaI. 2012 Non-systemic fungal endophytes of grasses Fungal Ecology 5 289 297 10.1016/j.funeco.2010.12.001Search in Google Scholar

Schmitt, I., and Lumbsch, H. T. (2009). Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS ONE, 4(2), e4437, doi: 10.1371/journal.pone.0004437. SchmittI. LumbschH. T. 2009 Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi PLoS ONE 4 2 e4437 10.1371/journal.pone.0004437 263688719212443Open DOISearch in Google Scholar

Shaffer, J. P., Sarmiento, C., Zalamea, P. C., Gallery, R. E., Davis, A. S., Baltrus, D. A., and Arnold, A. E. (2016). Diversity, specificity, and phylogenetic relationships of endohyphal bacteria in fungi that inhabit tropical seeds and leaves. Frontiers in Ecology and Evolution, 4, 116, doi: 10.3389/fevo.2016.00116. ShafferJ. P. SarmientoC. ZalameaP. C. GalleryR. E. DavisA. S. BaltrusD. A. ArnoldA. E. 2016 Diversity, specificity, and phylogenetic relationships of endohyphal bacteria in fungi that inhabit tropical seeds and leaves Frontiers in Ecology and Evolution 4 116 10.3389/fevo.2016.00116 Open DOISearch in Google Scholar

Simpson, W. R., Faville, M. J., Moraga, R. A., Williams, W. M., Mcmanus, M. T., and Johnson, R. D. (2014). Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (= Triticeae) grasses. Journal of Systematics and Evolution, 52, 794–806. SimpsonW. R. FavilleM. J. MoragaR. A. WilliamsW. M. McmanusM. T. JohnsonR. D. 2014 Epichloë fungal endophytes and the formation of synthetic symbioses in Hordeeae (= Triticeae) grasses Journal of Systematics and Evolution 52 794 806 10.1111/jse.12107Search in Google Scholar

Slippers, B., and Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biology Reviews, 21, 90–106. SlippersB. WingfieldM. J. 2007 Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact Fungal Biology Reviews 21 90 106 10.1016/j.fbr.2007.06.002Search in Google Scholar

Soares, M. A., Li, H. Y., Kowalski, K. P., Bergen, M., Torres, M. S., and White, J. F. (2016). Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biological Invasions, 18, 2689–2702. SoaresM. A. LiH. Y. KowalskiK. P. BergenM. TorresM. S. WhiteJ. F. 2016 Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats Biological Invasions 18 2689 2702 10.1007/s10530-016-1160-zSearch in Google Scholar

Staniek, A., Woerdenbag, H. J., and Kayser, O. (2008). Endophytes: Exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interactions, 3, 75–93. StaniekA. WoerdenbagH. J. KayserO. 2008 Endophytes: Exploiting biodiversity for the improvement of natural product-based drug discovery Journal of Plant Interactions 3 75 93 10.1080/17429140801886293Search in Google Scholar

Suryanarayanan, T. S., Devarajan, P. T., Girivasan, K. P., Govindarajulu, M. B., Kumaresan, V., Murali, T. S., Rajamani, T., Thirunavukkarasu, N., and Venkatesan, G. (2018). The host range of multi-host endophytic fungi. Current Science, 115, 1963–1969. SuryanarayananT. S. DevarajanP. T. GirivasanK. P. GovindarajuluM. B. KumaresanV. MuraliT. S. RajamaniT. ThirunavukkarasuN. VenkatesanG. 2018 The host range of multi-host endophytic fungi Current Science 115 1963 1969 10.18520/cs/v115/i10/1963-1969Search in Google Scholar

Upson, R., Newsham, K. K., Bridge, P. D., Pearce, D. A., and Read, D. J. (2009a). Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecology, 2, 184–196. UpsonR. NewshamK. K. BridgeP. D. PearceD. A. ReadD. J. 2009a Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species Fungal Ecology 2 184 196 10.1016/j.funeco.2009.02.004Search in Google Scholar

Upson, R., Read, D. J., and Newsham, K. K. (2009b). Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza, 20, 1–11. UpsonR. ReadD. J. NewshamK. K. 2009b Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes Mycorrhiza 20 1 11 10.1007/s00572-009-0260-319495811Search in Google Scholar

Usuki, F., and Narisawa, K. (2007). A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia, 99, 175–184. UsukiF. NarisawaK. 2007 A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage Mycologia 99 175 184 10.1080/15572536.2007.11832577Search in Google Scholar

Uzma, F., Mohan, C. D., Hashem, A., Konappa, N. M., Rangappa, S., Kamath, P. V., Singh, B. P., Mudili, V., Gupta, V. K., Siddaiah, C. N., Chowdappa, S., Alqarawi, A. A., and Abd_Allah, E. F. (2018). Endophytic fungi—alternative sources of cytotoxic compounds: A review. Frontiers in Pharmacology, 9, 309, doi: 10.3389/fphar.2018.00309. UzmaF. MohanC. D. HashemA. KonappaN. M. RangappaS. KamathP. V. SinghB. P. MudiliV. GuptaV. K. SiddaiahC. N. ChowdappaS. AlqarawiA. A. Abd_AllahE. F. 2018 Endophytic fungi—alternative sources of cytotoxic compounds: A review Frontiers in Pharmacology 9 309 10.3389/fphar.2018.00309 593220429755344Open DOISearch in Google Scholar

Valla, G., Capellano, A., Hugueney, R., and Moiroud, A. (1989). Penicillium nodositatum Valla, a new species inducing myconodules on Alnus roots. Plant and Soil, 114, 142–146. VallaG. CapellanoA. HugueneyR. MoiroudA. 1989 Penicillium nodositatum Valla, a new species inducing myconodules on Alnus roots Plant and Soil 114 142 146 10.1007/BF02203093Search in Google Scholar

Venugopalan, A., and Srivastava, S. (2015). Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnology Advances, 33, 873–887. VenugopalanA. SrivastavaS. 2015 Endophytes as in vitro production platforms of high value plant secondary metabolites Biotechnology Advances 33 873 887 10.1016/j.biotechadv.2015.07.00426225453Search in Google Scholar

Waqas, M., Khan, A. L., Muhammad, H., Shahzad, R., Kang, S. M., Kim, J. G., and Lee, I. J. (2015). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: An example of Penicillium citrinum and Aspergillus terreus. Journal of Plant Interactions, 10, 280–287. WaqasM. KhanA. L. MuhammadH. ShahzadR. KangS. M. KimJ. G. LeeI. J. 2015 Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: An example of Penicillium citrinum and Aspergillus terreus Journal of Plant Interactions 10 280 287 10.1080/17429145.2015.1079743Search in Google Scholar

Yadav, V., Kumar, M., Deep, D. K., Kumar, H., Sharma, R., Tripathi, T., Tuteja, N., Saxena, A. K., and Johri, A. K. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. Journal of Biological Chemistry, 285, 26532–26544. YadavV. KumarM. DeepD. K. KumarH. SharmaR. TripathiT. TutejaN. SaxenaA. K. JohriA. K. 2010 A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant Journal of Biological Chemistry 285 26532 26544 10.1074/jbc.M110.111021292409020479005Search in Google Scholar

Yan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C., and Shao, D. (2019). Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology, 103, 3327–3340. YanL. ZhuJ. ZhaoX. ShiJ. JiangC. ShaoD. 2019 Beneficial effects of endophytic fungi colonization on plants Applied Microbiology and Biotechnology 103 3327 3340 10.1007/s00253-019-09713-230847542Search in Google Scholar

Zimowska, B., Bielecka, M., Abramczyk, B., and Nicoletti, R. (2020a). Bioactive products from endophytic fungi of sages (Salvia spp.). Agriculture, 10(11), 543, doi: 10.3390/agriculture10110543. ZimowskaB. BieleckaM. AbramczykB. NicolettiR. 2020a Bioactive products from endophytic fungi of sages (Salvia spp.) Agriculture 10 11 543 10.3390/agriculture10110543 Open DOISearch in Google Scholar

Zimowska, B., Okoń, S., Becchimanzi, A., Krol, E. D., and Nicoletti, R. (2020b). Phylogenetic characterization of Botryosphaeria strains associated with Asphondylia galls on species of Lamiaceae. Diversity, 12(2), 41, doi: 10.3390/d12020041. ZimowskaB. OkońS. BecchimanziA. KrolE. D. NicolettiR. 2020b Phylogenetic characterization of Botryosphaeria strains associated with Asphondylia galls on species of Lamiaceae Diversity 12 2 41 10.3390/d12020041 Open DOISearch in Google Scholar

eISSN:
2083-5965
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Plant Science, Zoology, Ecology, other