Open Access

RNApolis: Computational Platform for RNA Structure Analysis


Cite

[1] Adamiak R.W., Blazewicz J., Formanowicz P., Gdaniec Z., Kasprzak M., Popenda M., Szachniuk M., An algorithm for an automatic NOE pathways analysis of 2D NMR spectra of RNA duplexes, Journal of Computational Biology,11, 2004, 163-180.10.1089/10665270477341694815072694Search in Google Scholar

[2] Antczak M., Blazewicz J., Lukasiak P., Milostan M., Krasnogor N., Palik G., DomAns-Pattern based method for protein domain boundaries prediction and analysis, Foundations of Computing and Decision Sciences, 36, 2011, 99-119.Search in Google Scholar

[3] Antczak M., Zok T., Popenda M., Lukasiak P., Adamiak R.W., Blazewicz J., Szachniuk M., RNApdbee - a webserver to derive secondary structures from pdb files of knotted and unknotted RNAs, Nucleic Acids Research, 42, 2014, W368-W372.10.1093/nar/gku330408611224771339Search in Google Scholar

[4] Antczak M., Popenda M., Zok T., Sarzynska J., Ratajczak T., Tomczyk K., Adamiak R.W., Szachniuk M., New functionality of RNAComposer: an application to shape the axis of miR160 precursor structure, Acta Biochimica Polonica, 63, 2016, 737-744.10.18388/abp.2016_132927741327Search in Google Scholar

[5] Antczak M., Popenda M., Zok T., Zurkowski M., Adamiak R.W., Szachniuk M., New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation, Bioinformatics, 34, 2018, 1304-1312.10.1093/bioinformatics/btx783590566029236971Search in Google Scholar

[6] Antczak M., Zok T., Osowiecki M., Popenda M., Adamiak R.W., Szachniuk M., RNAfitme: a webserver for modeling nucleobase and nucleoside residue conformation in fixed-backbone RNA structures, BMC Bioinformatics, 19, 2018, 304.10.1186/s12859-018-2317-9610692830134831Search in Google Scholar

[7] Antczak M., Zablocki M., Zok T., Rybarczyk A., Blazewicz J., Szachniuk M., RNAvista: a webserver to assess RNA secondary structures with non-canonical base pairs, Bioinformatics, 35, 2019, 152-155.10.1093/bioinformatics/bty609629804429985979Search in Google Scholar

[8] Backofen R., Engelhardt J., Erxleben A., Fallmann J., Grüning B., Ohlerd U., Rajewsky N., Stadler P.F., RNA-bioinformatics: Tools, services and databases for the analysis of RNA-based regulation, Journal of Biotechnology, 261, 2017, 76-84.10.1016/j.jbiotec.2017.05.01928554830Search in Google Scholar

[9] Benson D., Karsch-Mizrachi I., Lipman D., Ostell J., Wheeler D., Genbank, Nucleic Acids Research, 35, 2007, D21-D25.10.1093/nar/gkl986178124517202161Search in Google Scholar

[10] Berman H.M., The protein data bank: a historical perspective, Acta Crystallographica Section A, 64, 2007, 88-95.10.1107/S010876730703562318156675Search in Google Scholar

[11] Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E., The Protein Data Bank, Nucleic Acids Research, 28, 2000, 235-242.10.1093/nar/28.1.23510247210592235Search in Google Scholar

[12] Bhagat J., Tanoh F., Nzuobontane E., Laurent T., Orlowski J., Roos M., Wolstencroft K., Aleksejevs S., Stevens R., Pettifer S., Lopez R., Goble C.A., BioCatalogue: a universal catalogue of web services for the life sciences, Nucleic Acids Research, 38, 2010, 689-694.10.1093/nar/gkq394289612920484378Search in Google Scholar

[13] Blazewicz J., Figlerowicz M., Kasprzak M., Nowacka M., Rybarczyk A., RNA Partial Degradation Problem: Motivation, Complexity, Algorithm, Journal of Computational Biology, 18, 2011, 821-834.10.1089/cmb.2010.015321563977Search in Google Scholar

[14] Brion P., Westhof E., Hierarchy and dynamics of RNA folding, Annual Review of Biophysics and Biomolecular Structure, 26, 1997, 113-137.10.1146/annurev.biophys.26.1.1139241415Search in Google Scholar

[15] Chen V.B., Arendall W.B. 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallographica. Section D, Biological crystallography, 66, 2010, 12-21.10.1107/S0907444909042073280312620057044Search in Google Scholar

[16] Chen L., Heikkinen L., Wang C.L., Yang Y., Knott K.E., Wong G., miRToolsGallery: A microRNA bioinformatics resources database portal, Database (Oxford), 2018, bay004.10.1093/database/bay004581972529688355Search in Google Scholar

[17] Cruz J.A., Blanchet M.-F., Boniecki M., Bujnicki J.M., Chen S.-J., Cao S., Das R., Ding F., Dokholyan N.V., Flores S.C., Huang L., Lavender C.A., Lisi V., Major F., Mikolajczak K., Patel D.J., Philips A., Puton T., Santalucia J., Sijenyi F., Hermann T., Rother K., Rother M., Serganov A., Skorupski M., Soltysinski T., Sripakdeevong P., Tuszynska I., Weeks K.M., Waldsich C., Wildauer M., Leontis N.B., Westhof E., RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction, RNA, 18, 2012, 610-625.10.1261/rna.031054.111331255022361291Search in Google Scholar

[18] Danaee P., Rouches M., Wiley M., Deng D., Huang L., Hendrix D., bpRNA: largescale automated annotation and analysis of RNA secondary structure, Nucleic Acids Research, 46, 2018, 5381-5394.10.1093/nar/gky285600958229746666Search in Google Scholar

[19] Dawson W.K., Bujnicki J.M., Computational modeling of RNA 3D structures and interactions, Current Opinion in Structural Biology, 37, 2016, 22-28.10.1016/j.sbi.2015.11.00726689764Search in Google Scholar

[20] Deigan K.E., Li T.W., Mathews D.H., Weeks K.M., Accurate SHAPE-directed RNA structure determination, Proceedings of National Academy of Sciences USA, 106, 2009, 97-102.10.1073/pnas.0806929106262922119109441Search in Google Scholar

[21] Gudanis D., Popenda L., Szpotkowski K., Kierzek R., Gdaniec Z., Structural characterization of a dimer of RNA duplexes composed of 8-bromoguanosine modified CGG trinucleotide repeats: a novel architecture of RNA quadruplexes, Nucleic Acids Research,44, 2016, 2409-2416.10.1093/nar/gkv1534479728326743003Search in Google Scholar

[22] Hall S.R., Allen F.H., Brown I.D., The Crystallographic Information File (CIF): a new standard archive file for crystallography, Acta Crystallographica, A47, 1991, 655-685.10.1107/S010876739101067XSearch in Google Scholar

[23] Honer zu Siederdissen C., Bernhart S.H., Stadler P.F., Hofacker I.L., A folding algorithm for extended RNA secondary structures, Bioinformatics, 27, 2011, i129-i136.10.1093/bioinformatics/btr220311735821685061Search in Google Scholar

[24] IUPAC-IUB Commission on Biochemical Nomenclature, Abbreviations and symbols for nucleic acids, polynucleotides, and their constituents, Biochemistry, 9, 1970, 4022-4027.10.1021/bi00822a023Search in Google Scholar

[25] Johnson A.D., An extended IUPAC nomenclature code for polymorphic nucleic acids, Bioinformatics, 26, 2010, 1386-1389.10.1093/bioinformatics/btq098286585820202974Search in Google Scholar

[26] Kabsch W., A solution for the best rotation to relate two sets of vectors, Acta Crystallographica, A32, 1976, 922-923.10.1107/S0567739476001873Search in Google Scholar

[27] Kulikova T., Akhtar R., Aldebert P., Althorpe N., Andersson M., Baldwin A., Bates K., Bhattacharyya S., Bower L., Browne P., Castro M., Cochrane G., Duggan K., Eberhardt R., Faruque N., Hoad G., Kanz C., Lee C., Leinonen R., Lin Q., Lombard V., Lopez R., Lorenc D., McWilliam H., Mukherjee G., Nardone F., Pastor M.P., Plaister S., Sobhany S., Stoehr P., Vaughan R., Wu D., Zhu W., Apweiler R., EMBL nucleotide sequence database in 2006, Nucleic Acids Research, 35, 2007, D16-D20.10.1093/nar/gkl913189731617148479Search in Google Scholar

[28] Leontis N.B., Westhof E., Geometric nomenclature and classification of RNA base pairs, RNA, 7, 2001, 499-512.10.1017/S1355838201002515137010411345429Search in Google Scholar

[29] Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L., ViennaRNA Package 2.0, Algorithms for Molecular Biology, 6, 2011, 26.10.1186/1748-7188-6-26331942922115189Search in Google Scholar

[30] Lukasiak P., Antczak M., Ratajczak T., Bujnicki J.M., Szachniuk M., Popenda M., Adamiak R.W., Blazewicz J., RNAlyzer – novel approach for quality analysis of RNA structural models, Nucleic Acids Research,41, 2013, 5978-90.10.1093/nar/gkt318369549923620294Search in Google Scholar

[31] Lukasiak P., Antczak M., Ratajczak T., Szachniuk M., Popenda M., Adamiak R.W., Blazewicz J., RNAssess - a webserver for quality assessment of RNA 3D structures, Nucleic Acids Research,43, 2015, W502-W506.10.1093/nar/gkv557448924226068469Search in Google Scholar

[32] Mathews D.H., Disney M.D., Childs J.L., Schroeder S.J., Zuker M., Turner D.H., Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure, Proceedings of National Academy of Sciences USA, 101, 2004, 7287-7292.10.1073/pnas.040179910140991115123812Search in Google Scholar

[33] Mathews D.H., Turner D.H., Prediction of RNA secondary structure by free energy minimization, Current Opinion in Structural Biology, 16, 2006, 270-278.10.1016/j.sbi.2006.05.01016713706Search in Google Scholar

[34] Miao Z., Westhof E., RNA Structure: Advances and Assessment of 3D Structure Prediction, Annual Review of Biophysics, 46, 2017, 483-503.10.1146/annurev-biophys-070816-03412528375730Search in Google Scholar

[35] Miskiewicz J., Szachniuk M., Discovering structural motifs in miRNA precursors from Viridiplantae kingdom, Molecules, 23, 6, 2018, 1367.10.3390/molecules23061367Search in Google Scholar

[36] Moult J., Fidelis K., Kryshtafovych A., Schwede T., Tramontano A., Critical assessment of methods of protein structure prediction (CASP)-Round XII, Proteins, 86, 2018, 7-15.10.1002/prot.25415589704229082672Search in Google Scholar

[37] Narayanan B.C., Westbrook J., Ghosh S., Petrov A.I., Sweeney B., Zirbel C.L., Leontis N.B., Berman H.M., The Nucleic Acid Database: new features and capabilities, Nucleic Acids Research, 42, 2014, D114–D122.10.1093/nar/gkt980396497224185695Search in Google Scholar

[38] Pang P.S., Elazar M., Pham E.A., Glenn J.S., Simplified RNA secondary structure mapping by automation of SHAPE data analysis, Nucleic Acids Research, 39, 2011, e151.10.1093/nar/gkr773323917621965531Search in Google Scholar

[39] Parisien M., Cruz J.A., Westhof E., Major F., New metrics for comparing and assessing discrepancies between RNA 3D structures and models, RNA, 15, 2009, 1875-1885.10.1261/rna.1700409274303819710185Search in Google Scholar

[40] Pearson W.R., Lipman D.J., Improved tools for biological sequence comparison, Proceedings of the National Academy of Sciences of the United States of America, 85, 1988, 2444-2448.10.1073/pnas.85.8.24442800133162770Search in Google Scholar

[41] Popenda L., Bielecki L., Gdaniec Z., Adamiak R.W., Structure and dynamics of adenosine bulged RNA duplex reveals formation of the dinucleotide platform in the C:G-A triple, Arkivoc: Archive for Organic Chemistry, 3, 2009, 130-144.10.3998/ark.5550190.0010.311Search in Google Scholar

[42] Popenda M., Blazewicz M., Szachniuk M., Adamiak R.W., RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures, Nucleic Acids Research, 36, 2008, D386-D391.10.1093/nar/gkm786223887517921499Search in Google Scholar

[43] Popenda M., Szachniuk M., Blazewicz M., Wasik S., Burke E.K., Blazewicz J., Adamiak R.W., RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures, BMC Bioinformatics, 11, 2010, 231.10.1186/1471-2105-11-231287354320459631Search in Google Scholar

[44] Popenda M., Szachniuk M., Antczak M., Purzycka K.J., Lukasiak P., Bartol N., Blazewicz J., Adamiak R.W., Automated 3D structure composition for large RNAs, Nucleic Acids Research, 40, 2012, e112.10.1093/nar/gks339341314022539264Search in Google Scholar

[45] Prlic A., Yates A., Bliven S.E., Rose P.W., Jacobsen J., Troshin P.V., Chapman M., Gao J., Koh C.H., Foisy S., Holland R., Rimsa G., Heuer M.L., Brandstätter–Müller H., Bourne P.E., Willis S., BioJava: an open-source framework for bioinformatics in 2012, Bioinformatics, 28, 2012 2693–2695.10.1093/bioinformatics/bts494346774422877863Search in Google Scholar

[46] Purzycka K.J., Popenda M., Szachniuk M., Antczak M., Lukasiak P., Blazewicz J., Adamiak R.W., Automated 3D RNA structure prediction using the RNAComposer method for riboswitches, in: S.-J. Chen, D.H. Burke-Aguero (eds.), Methods in Enzymology: Computational Methods for Understanding Riboswitches, 553, Elsevier, 2014, 3-34.10.1016/bs.mie.2014.10.050Search in Google Scholar

[47] Puton T., Kozlowski L.P., Rother K.M., Bujnicki J.M., CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction, Nucleic Acids Research, 41, 2013, 4307-4323.10.1093/nar/gkt101362759323435231Search in Google Scholar

[48] Rybarczyk A., Szostak N., Antczak M., Zok T., Popenda M., Adamiak R.W., Blazewicz J., Szachniuk M., New in silico approach to assessing RNA secondary structures with non-canonical base pairs, BMC Bioinformatics, 16, 2015, 276.10.1186/s12859-015-0718-6455722926329823Search in Google Scholar

[49] Seetin M.G., Mathews D.H., RNA structure prediction: an overview of methods, Methods of Molecular Biology, 905, 2012, 99-122.10.1007/978-1-61779-949-5_822736001Search in Google Scholar

[50] Stevens R.D., Robinson A.J., Goble C.A., MyGrid: Personalised bioinformatics on the information grid, Bioinformatics, 19, 2003, i302-i304.10.1093/bioinformatics/btg104112855473Search in Google Scholar

[51] Sugawara H., Ogasawara O., Okubo K., Gojobori T., Tateno Y., Ddbj with new system and face, Nucleic Acids Research, 36, 2008, D22-D24.10.1093/nar/gkm889223882917962300Search in Google Scholar

[52] Szachniuk M., Assigning NMR Spectra of Irregular RNAs by Heuristic Algorithms, Bulletin of the Polish Academy of Sciences Technical Sciences,63, 2015, 329-338.10.1515/bpasts-2015-0037Search in Google Scholar

[53] Turner D.H., Mathews D.H., RNA Structure Determination: Methods and Protocols, Springer, New York, 2016.10.1007/978-1-4939-6433-8Search in Google Scholar

[54] Wiedemann J., Zok T., Milostan M., Szachniuk M., LCS-TA to identify similar fragments in RNA 3D structures, BMC Bioinformatics, 18, 2017, 456.10.1186/s12859-017-1867-6565159829058576Search in Google Scholar

[55] Wojciechowski P., Frohmberg W., Kierzynka M., Zurkowski P., Blazewicz J., GMAPSEQ– a new method for mapping reads to a reference genome, Foundations of Computing and Decision Sciences, 41, 2016, 123-142.10.1515/fcds-2016-0007Search in Google Scholar

[56] wwPDB consortium, Protein Data Bank: the single global archive for 3D macromolecular structure data, Nucleic Acids Research, 47, 2019, D520–D528.Search in Google Scholar

[57] Zok T., Popenda M., Szachniuk M., MCQ4Structures to compute similarity of molecule structures, Central European Journal of Operations Research, 22, 2014, 457-474.10.1007/s10100-013-0296-5Search in Google Scholar

[58] Zok T., Antczak M., Riedel M., Nebel D., Villmann T., Lukasiak P., Blazewicz J., Szachniuk M., Building the library of RNA 3D nucleotide conformations using clustering approach, International Journal of Applied Mathematics and Computer Science,25, 2015, 689-700.10.1515/amcs-2015-0050Search in Google Scholar

[59] Zok T., Antczak M., Zurkowski M., Popenda M., Blazewicz J., Adamiak R.W., Szachniuk M., RNApdbee 2.0: multifunctional tool for RNA structure annotation, Nucleic Acids Research, 46, 2018, W30-W35.10.1093/nar/gky314603100329718468Search in Google Scholar

eISSN:
2300-3405
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, Artificial Intelligence, Software Development