On the Application of Laser Shock Peening as a Manufacturing and Repair Process to Improve the Fatigue Performance of Refill Friction Stir Spot-Welded AA2024-T3 Joints
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Achintha, M., Nowell, D., Furfari, D., Sackett, E.E., Bache, M.R. (2014). Fatigue behavior of geometric features subjected to laser shock peening: Experiments and modeling. International Journal of Fatigue, 62, 171–179. https://doi.org/10.1016/j.ijfatigue.2013.04.016AchinthaM.NowellD.FurfariD.SackettE.E.BacheM.R. (2014). Fatigue behavior of geometric features subjected to laser shock peening: Experiments and modeling. International Journal of Fatigue, 62, 171–179. https://doi.org/10.1016/j.ijfatigue.2013.04.016Search in Google Scholar
Becker, N., Kuhn, D., Piochowiak, J., Klusemann, B. (2025). Fatigue life enhancement via residual stress engineering due to local forming during refill friction stir spot welding. Journal of Materials Research and Technology, 36, 2951–2959. https://doi.org/10.1016/j.jmrt.2025.03.205BeckerN.KuhnD.PiochowiakJ.KlusemannB. (2025). Fatigue life enhancement via residual stress engineering due to local forming during refill friction stir spot welding. Journal of Materials Research and Technology, 36, 2951–2959. https://doi.org/10.1016/j.jmrt.2025.03.205Search in Google Scholar
Berthe, L., Fabbro, R., Peyre, P., Bartnicki, E. (1999). Wavelength dependent of laser shockwave generation in the water-confinement regime. Journal of Applied Physics, 85, 7552–7555. https://doi.org/10.1063/1.370553BertheL.FabbroR.PeyreP.BartnickiE. (1999). Wavelength dependent of laser shockwave generation in the water-confinement regime. Journal of Applied Physics, 85, 7552–7555. https://doi.org/10.1063/1.370553Search in Google Scholar
Brzostek, R.C., Suhuddin, U., dos Santos, J.F. (2018). Fatigue assessment of refill friction stir spot weld in AA 2024-T3 similar joints. Fatigue and Fracture of Engineering Materials and Structures, 41(5), 1208–1223. https://doi.org/10.1111/ffe.12764BrzostekR.C.SuhuddinU.dos SantosJ.F. (2018). Fatigue assessment of refill friction stir spot weld in AA 2024-T3 similar joints. Fatigue and Fracture of Engineering Materials and Structures, 41(5), 1208–1223. https://doi.org/10.1111/ffe.12764Search in Google Scholar
Busse, D.O., Irving, P.E., Ganguly, S., Furfari, D., Polese, C. (2018). Improving fatigue performance of AA 2024-T3 clad aeronautical riveted lap-joints using laser-peening, In: Proceedings of the 29th ICAF Symposium, Curran Associates Inc., New York.BusseD.O.IrvingP.E.GangulyS.FurfariD.PoleseC. (2018). Improving fatigue performance of AA 2024-T3 clad aeronautical riveted lap-joints using laser-peening, In: Proceedings of the 29th ICAF Symposium, Curran Associates Inc., New York.Search in Google Scholar
Chupakhin, S., Kashaev, N., Huber, N. (2016), Effect of elasto-plastic material behaviour on determination of residual stress profiles using the hole drilling method, The Journal of Strain Analysis for Engineering Design, 51(8), 572–581. https://doi.org/10.1177/0309324716663940ChupakhinS.KashaevN.HuberN. (2016), Effect of elasto-plastic material behaviour on determination of residual stress profiles using the hole drilling method, The Journal of Strain Analysis for Engineering Design, 51(8), 572–581. https://doi.org/10.1177/0309324716663940Search in Google Scholar
Ding, K., Ye, L. (2006). Laser Shock Peening: Performance and Process Simulation. Woodhead Publishing, Cambridge.DingK.YeL. (2006). Laser Shock Peening: Performance and Process Simulation. Woodhead Publishing, Cambridge.Search in Google Scholar
Gariépy, A., Bridier, F., Hoseini, M., Bocher, P., Perron, C., Lévesque, M. (2013). Experimental and numerical investigation of material heterogeneity in shot peened aluminium alloy AA2024-T351. Surface and Coatings Technology, 219, 15-30. https://doi.org/10.1016/j.surfcoat.2012.12.046GariépyA.BridierF.HoseiniM.BocherP.PerronC.LévesqueM. (2013). Experimental and numerical investigation of material heterogeneity in shot peened aluminium alloy AA2024-T351. Surface and Coatings Technology, 219, 15-30. https://doi.org/10.1016/j.surfcoat.2012.12.046Search in Google Scholar
Fairand, B.P., Clauer, A.H., Jung, R.G., Wilcox, B.A. (1974). Quantitative assessment of laser‐induced stress waves generated at confined surfaces. Applied Physics Letters, 25, 431–433. https://doi.org/10.1063/1.1655536FairandB.P.ClauerA.H.JungR.G.WilcoxB.A. (1974). Quantitative assessment of laser‐induced stress waves generated at confined surfaces. Applied Physics Letters, 25, 431–433. https://doi.org/10.1063/1.1655536Search in Google Scholar
Hatamleh, O. (2009). A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints. International Journal of Fatigue, 31(5), 974–988. https://doi.org/10.1016/j.ijfatigue.2008.03.029HatamlehO. (2009). A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints. International Journal of Fatigue, 31(5), 974–988. https://doi.org/10.1016/j.ijfatigue.2008.03.029Search in Google Scholar
Kallien, Z., Keller, S., Ventzke, V., Kashaev, N., Klusemann, B. (2019). Effect of laser peening process parameters and sequences on residual stress profiles. Metals, 9(6), 655. https://doi.org/10.3390/met9060655KallienZ.KellerS.VentzkeV.KashaevN.KlusemannB. (2019). Effect of laser peening process parameters and sequences on residual stress profiles. Metals, 9(6), 655. https://doi.org/10.3390/met9060655Search in Google Scholar
Kashaev, N., Riekehr, S., Falck, R., et al. (2015). Development of laser beam welding concepts for fuselage panels. In: Proceedings of the 5th CEAS Air & Space Conference, Delft, paper no. 15.KashaevN.RiekehrS.FalckR. (2015). Development of laser beam welding concepts for fuselage panels. In: Proceedings of the 5th CEAS Air & Space Conference, Delft, paper no. 15.Search in Google Scholar
Kashaev, N., Ventzke, V., Horstmann, M., et al. (2017). Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens. International Journal of Fatigue, 98, 223–233. https://doi.org/10.1016/j.ijfatigue.2017.01.042KashaevN.VentzkeV.HorstmannM. (2017). Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens. International Journal of Fatigue, 98, 223–233. https://doi.org/10.1016/j.ijfatigue.2017.01.042Search in Google Scholar
Kashaev, N., Chupakhin, S., Ventzke, V., et. al. (2018). Fatigue Life Extension of AA2024 Specimens and Integral Structures by Laser Shock Peening. MATEC Web of Conferences, 165, 18001. https://doi.org/10.1051/matecconf/201816518001KashaevN.ChupakhinS.VentzkeV. (2018). Fatigue Life Extension of AA2024 Specimens and Integral Structures by Laser Shock Peening. MATEC Web of Conferences, 165, 18001. https://doi.org/10.1051/matecconf/201816518001Search in Google Scholar
Kashaev, N., Ventzke, V., Çam, G. (2018). Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 36, 571–600. https://doi.org/10.1016/j.jmapro.2018.10.005KashaevN.VentzkeV.ÇamG. (2018). Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 36, 571–600. https://doi.org/10.1016/j.jmapro.2018.10.005Search in Google Scholar
Kashaev, N., Ushmaev, D., Ventzke, V., Klusemann, B., Fomin, F. (2020). On the application of laser shock peening for retardation of surface fatigue cracks in laser beam-welded AA6056. Fatigue and Fracture of Engineering Materials and Structures, 43(7), 1500–1513. https://doi.org/10.1111/ffe.13226KashaevN.UshmaevD.VentzkeV.KlusemannB.FominF. (2020). On the application of laser shock peening for retardation of surface fatigue cracks in laser beam-welded AA6056. Fatigue and Fracture of Engineering Materials and Structures, 43(7), 1500–1513. https://doi.org/10.1111/ffe.13226Search in Google Scholar
Kashaev, N., Keller, S., et al. (2023). Retardation of fatigue cracks in welded structures through laser shock peening. In: Proceedings of the 31st ICAF Symposium, Delft, paper no. 122.KashaevN.KellerS. (2023). Retardation of fatigue cracks in welded structures through laser shock peening. In: Proceedings of the 31st ICAF Symposium, Delft, paper no. 122.Search in Google Scholar
Korbel, A. (2022). Effect of aircraft rivet installation process and production variables on residual stress, clamping force and fatigue behaviour of thin sheet riveted lap joints. Thin-Walled Structures, 181, 110041. https://doi.org/10.1016/j.tws.2022.110041KorbelA. (2022). Effect of aircraft rivet installation process and production variables on residual stress, clamping force and fatigue behaviour of thin sheet riveted lap joints. Thin-Walled Structures, 181, 110041. https://doi.org/10.1016/j.tws.2022.110041Search in Google Scholar
Montross, C.S., Wei, T., Ye, L., Clark, G., Mai, Y.W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 24, 1021–1036. https://doi.org/10.1016/S0142-1123(02)00022-1MontrossC.S.WeiT.YeL.ClarkG.MaiY.W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 24, 1021–1036. https://doi.org/10.1016/S0142-1123(02)00022-1Search in Google Scholar
Ocaña, J.L., Correa, C., Porro, J.A., Díaz, M., de Lara, L.R., Peral, D. (2015). Induction of through-thickness compressive residual stress fields in thin Al2024-T351 plates by laser shock processing. International Journal of Structural Integrity, 6(6), 725–736. https://doi.org/10.1108/IJSI-10-2014-0051OcañaJ.L.CorreaC.PorroJ.A.DíazM.de LaraL.R.PeralD. (2015). Induction of through-thickness compressive residual stress fields in thin Al2024-T351 plates by laser shock processing. International Journal of Structural Integrity, 6(6), 725–736. https://doi.org/10.1108/IJSI-10-2014-0051Search in Google Scholar
Richards, D.G., Prangnell, P.B., Williams, S.W., Withers, P.J. (2008). Global mechanical tensioning for the management of residual stresses in welds. Materials Science and Engineering: A, 489(1-2), 351–362. https://doi.org/10.1016/j.msea.2007.12.042RichardsD.G.PrangnellP.B.WilliamsS.W.WithersP.J. (2008). Global mechanical tensioning for the management of residual stresses in welds. Materials Science and Engineering: A, 489(1-2), 351–362. https://doi.org/10.1016/j.msea.2007.12.042Search in Google Scholar
Schilling, C., dos Santos, J. (2004). US Patent, no. US 6,722,556 B2.SchillingC.dos SantosJ. (2004). US Patent, no. US 6,722,556 B2.Search in Google Scholar
Schijve, J. (2001). Fatigue of Structures and Materials, 2nd ed., Springer, Delft.SchijveJ. (2001). Fatigue of Structures and Materials, 2nd ed., Springer, Delft.Search in Google Scholar
Sikhamov, R., Fomin, F., Klusemann, B., Kashaev, N. (2020). The influence of laser shock peening on fatigue properties of AA2024-T3 alloy with a fastener hole. Metals, 10(4), 495. https://doi.org/10.3390/met10040495SikhamovR.FominF.KlusemannB.KashaevN. (2020). The influence of laser shock peening on fatigue properties of AA2024-T3 alloy with a fastener hole. Metals, 10(4), 495. https://doi.org/10.3390/met10040495Search in Google Scholar
Steinzig, M., Ponslet, E. (2003). Residual stress measurement using the hole drilling method and laser speckle interferometry: Part I. Experimental Techniques, 27(3), 43–46. https://doi.org/10.1111/j.1747-1567.2003.tb00114.xSteinzigM.PonsletE. (2003). Residual stress measurement using the hole drilling method and laser speckle interferometry: Part I. Experimental Techniques, 27(3), 43–46. https://doi.org/10.1111/j.1747-1567.2003.tb00114.xSearch in Google Scholar
Sticchi, M., Schnubel, D., Kashaev, N., and Huber, N. (2015). Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components. Applied Mechanics Reviews, 67(1), 010801. https://doi.org/10.1115/1.4028160SticchiM.SchnubelD.KashaevN.HuberN. (2015). Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components. Applied Mechanics Reviews, 67(1), 010801. https://doi.org/10.1115/1.4028160Search in Google Scholar
Toparli, M.B., Fitzpatrick, M.E. (2019). Effect of Overlapping of Peen Spots on Residual Stresses in Laser-Peened Aluminium Sheets. Metallurgical and Materials Transactions A, 50, 1109–1112. https://doi.org/10.1007/s11661-018-05100-0ToparliM.B.FitzpatrickM.E. (2019). Effect of Overlapping of Peen Spots on Residual Stresses in Laser-Peened Aluminium Sheets. Metallurgical and Materials Transactions A, 50, 1109–1112. https://doi.org/10.1007/s11661-018-05100-0Search in Google Scholar
Yang, Y., Dong, P., Tian, X., Zhang, Z. (1998). Prevention of welding hot cracking of high strength aluminium alloys by mechanical rolling. In: Proceedings of the 5th International Conference on Trends in Welding Research. Eds. J. M. Vitek, S.A. David, J. A. Johnson, H. B. Smart and T. DebRoy, Pine Mountain, Georgia, p. 700–705.YangY.DongP.TianX.ZhangZ. (1998). Prevention of welding hot cracking of high strength aluminium alloys by mechanical rolling. In: Proceedings of the 5th International Conference on Trends in Welding Research. Eds. J. M.VitekS.A.DavidJ. A.JohnsonH. B.SmartT.DebRoy, Pine Mountain, Georgia, p. 700–705.Search in Google Scholar