Open Access

A FCG Model and the Graphical User Interface Under Matlab for Predicting Fatigue Life: Parametric Studies


Cite

[1] Grasso, M., Penta, F., Pinto, P. and Pucillo, G.P. (2013). A four-parameters model for fatigue crack growth data analysis. Frat. ed Integrita Strutt., vol. 26, pp. 69–79. DOI: 10.3221/IGF-ESIS.26.08. Open DOISearch in Google Scholar

[2] Kebir, T., Benguediab, M. and Imad, A. (2017). A Model for Fatigue Crack Growth in the Paris Regime under the Variability of Cyclic Hardening and Elastic Properties. Fatigue of Aircraft Structure, vol. 2017, no. 9, pp. 117–135. DOI: 10.1515/fas-2017-0010. Open DOISearch in Google Scholar

[3] Forth, S.C., Wright, C.W. and Johnston, W.M. (2005). 7075-T6 and 2024-T351 aluminum alloy fatigue crack growth rate data. Virginia: NASA Langely Research Center. (NASA/TM-2005-213907), pp. 1–19. Search in Google Scholar

[4] Ould Chikh, B., Imad, A. and Benguediab, M. (2008). Influence of the cyclic plastic zone size on the propagation of the fatigue crack in case of 12NC6 steel. Computational Materials Science, vol. 43, pp. 1010–1017. DOI: 10.1016/j.commatsci.2008.02.019. Open DOISearch in Google Scholar

[5] Kim, J.-K. and Shim, D.-S. (2000). The variation in fatigue crack growth due to the thickness effect. International Journal of Fatigue, vol. 22, pp. 611–618. DOI: 10.1016/S0142-1123(00)00032-3. Open DOISearch in Google Scholar

[6] Kebir, T., Benguediab, M. and Imad, A. (2017). Influence of the variability of the elastics properties on plastic zone and fatigue crack growth. Mechanics and Mechanical Engineering, vol. 21, no. 4, pp. 919–934. Search in Google Scholar

[7] Paul, S.K. and Tarafder, S. (2013). Cyclic plastic deformation response at fatigue crack tips. International Journal of Pressure Vessels and Piping, vol. 101, pp. 81–90. DOI: 10.1016/j.ijpvp.2012.10.007. Open DOISearch in Google Scholar

[8] Jean-Christophe, L.R. (1999). Étude du comportement et de L’endommagement en fatigue d’un acier inoxydable austéno-ferritique moulé Vieilli. PhD Thesis, Ecole Centrale de Paris. Search in Google Scholar

[9] Prasad, K., Kumar, V., Bhanu Sankara Rao, K. and Sundararaman, M. (2016). Effects of crack closure and cyclic deformation on thermomechanical fatigue crack growth of a Near α Titanium Alloy. Metallurgical and Materials Transactions A, vol. 47, pp. 3713–3730. DOI: 10.1007/s11661-016-3482-y. Open DOISearch in Google Scholar

[10] Borges, M.F., Antunes, F.V., Prates, P.A. and Branco, R. (2020). A numerical study of the effect of isotropic hardening parameters on mode I fatigue crack growth. Metals, vol. 10, no. 2, p. 177. DOI: 10.3390/met10020177. Open DOISearch in Google Scholar

[11] Borges, M.F., Antunes, F.V., Prates, P., Branco, R., Vasco-Olmo, J.M. and Díaz, F.A.(2020). Model for fatigue crack growth analysis. Procedia Structural Integrity, vol. 25, no. 2020, pp. 254–261. DOI: 10.1016/j.prostr.2020.04.030. Open DOISearch in Google Scholar

[12] Alaoui, A.E.M. (2005). Influence du chargement sur la propagation en fatigue de fissures courtes dans un acier de construction navale. Thesis Doctor, University of Metz. Search in Google Scholar

[13] Yahiaoui, B. and Petrequin, P. (1974). Etude de la propagation de fissures par fatigue dans des aciers inoxydables austénitiques à bas carbone du type 304L et 316L. Rev. Phys. Appl. (Paris), vol. 9, no. 4, pp. 683–690. DOI: 10.1051/rphysap:0197400904068300. Open DOISearch in Google Scholar

[14] Singh, P.J., Achar, D.R.G., Guha, B. and Nordberg, H. (2003). Fatigue life prediction of gas tungsten arc welded AISI 304L cruciform joints with different LOP sizes. International Journal of Fatigue, vol. 25, no. 1, pp. 1–7. DOI: 10.1016/S0142-1123(02)00067-1. Open DOISearch in Google Scholar

[15] Ould Chikh, E.B., Nianga, J.M., Imad, A. and Benguediab, M. (2007). Correlation between the coefficients C and m of paris law for fatigue crack growth and the effect of the variability of these parameters on the prediction of the lifetime in the case of heat treated 12NC6 steel. CFM 2007 18ème Congrès Français de Mécanique, Aug 2007, Grenoble, France. From https://hal.archives-ouvertes.fr/hal-03362074. Search in Google Scholar

[16] Xiang, Y., Lu, Z. and Liu, Y. (2010). Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: Uniaxial loading. International Journal of Fatigue, vol. 32, no. 2, pp. 341–349. DOI: 10.1016/j.ijfatigue.2009.07.011. Open DOISearch in Google Scholar

[17] Mann, T. (2006). Fatigue assessment methods for welded structures and their application to an aluminium T-joint. PhD Doctor, University of science and technology, Norwegian. Search in Google Scholar

[18] Melson, J. H. (2014). Fatigue crack growth analysis with finite element methods and a monte carlo simulation. Thesis Master, Faculty of the Virginia Polytechnic Institute. Search in Google Scholar

[19] Mann, T. (2007). The influence of mean stress on fatigue crack propagation in aluminium alloys. International Journal of Fatigue, vol. 29, no. 8, pp. 1393–1401. DOI: 10.1016/j.ijfatigue.2006.11.010. Open DOISearch in Google Scholar

[20] Correia, J.A.F.O. et al. (2016). Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closure. Theoretical and Applied Fracture Mechanics, vol. 85, pp. 26–36. DOI: 10.1016/j.tafmec.2016.08.024. Open DOISearch in Google Scholar

[21] Forman, R.G., Shivakumar, V., Cardinal, J.W., Williams, L.C. and McKeighan, P.C. (2005). Fatigue crack growth database for damage tolerance analysis. Springfield, Virginia: NTIS. (DOT/FAA/AR-05/15). Search in Google Scholar

[22] Mohanty, J.R., Verma, B.B. and Ray, P.K. (2009). Prediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading). International Journal of Fatigue, vol. 31, pp. 418–424. DOI: 10.1016/j.ijfatigue. 2008.07.015. Open DOISearch in Google Scholar

[23] Johan Singh, P., Mukhopadhyay, C., Jayakumar, T., Mannan, S. and Raj, B. (2007). Understanding fatigue crack propagation in AISI 316 (N) weld using Elber’s crack closure concept: Experimental results from GCMOD and acoustic emission techniques. International Journal of Fatigue, vol. 29, no. 12, pp. 2170–2179. DOI: 10.1016/j. ijfatigue.2006.12.013. Open DOISearch in Google Scholar

[24] Alrubaie, K., Barroso, E. and Godefroid, L. (2006). Fatigue crack growth analysis of pre-strained 7475–T7351 aluminum alloy. International Journal of Fatigue, vol. 28, no. 8, pp. 934–942. DOI: 10.1016/j.ijfatigue.2005.09.008. Open DOISearch in Google Scholar

[25] Wang, Y., Cui, W., Wu, X., Wang, F. and Huang, X. (2008). The extended McEvily model for fatigue crack growth analysis of metal structures. International Journal of Fatigue, vol. 30, no. 10–11, pp. 1851–1860. DOI: 10.1016/j.ijfatigue.2008.01.014. Open DOISearch in Google Scholar

[26] Božić, Ž. Mlikota, M. Schmauder, S. (2011). Application of the ΔK, ΔJ and ΔCTOD parameters in fatigue crack growth modelling. Tehnicki Vjesnik, vol. 18, no. 3, pp. 459–466. Search in Google Scholar

[27] Klingbeil, N.W. (2003). A total dissipated energy theory of fatigue crack growth in ductile solids. International Journal of Fatigue, vol. 25, pp. 117–128. DOI: 10.1016/S0142-1123(02)00073-7. Open DOISearch in Google Scholar

[28] Yao, Y., Fine, M.E. and Keer, L.M. (2007). An energy approach to predict fatigue crack propagation in metals and alloys. International Journal of Fracture, vol. 146, no. 3, pp. 149–158. DOI: 10.1007/s10704-007-9156-4. Open DOISearch in Google Scholar

[29] Pugno, N., Ciavarella, M., Cornetti, P. and Carpinteri, A. (2006). A generalized Paris’ law for fatigue crack growth. Journal of the Mechanics and Physics of Solids, vol. 54, no. 7, pp. 1333–1349. DOI: 10.1016/j.jmps.2006.01.007. Open DOISearch in Google Scholar

[30] Fu, D.L., Zhang, L. and Cheng, J. (2006). An energy-based approach for fatigue crack growth. Key Engineering Materials, vol. 324–325, pp. 379–382. DOI: 10.4028/www.scientific.net/KEM.324-325.379. Open DOISearch in Google Scholar

[31] Karakaş Ö. and Szusta, J. (2016). Monotonic and low cycle fatigue behaviour of 2024-T3 aluminium alloy between room temperature and 300°C for designing VAWT components. Fatigue & Fracture of Engineering Materials & Structures, vol. 39, no. 1, pp. 95–109. DOI: 10.1111/ffe.12336. Open DOISearch in Google Scholar

[32] Schreurs, P.J.G. (2012). Fracture Mechanics Background. In Stephen W. Freiman and John J. Mecholsky Jr. (Eds.) The Fracture of Brittle Materials: Testing and Analysis, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 62–63. Search in Google Scholar

[33] Beden, S.M., Abdullah, S., Ariffin, A.K. and Al-Asady, N.A. (2010). Fatigue crack growth simulation of aluminium alloy under spectrum loadings. Materials and Design, vol. 31, no. 7, pp. 3449–3456. DOI: 10.1016/j.matdes.2010.01.039. Open DOISearch in Google Scholar

[34] Dimitriu, R.C. and Bhadeshia, H.K.D.H. (2010). Fatigue crack growth rate model for metallic alloys. Materials and Design, vol. 31, pp. 2134–2139. DOI: 10.1016/j.matdes.2009.11.019. Open DOISearch in Google Scholar

[35] Kumar, S.M., Pramod, R., Kumar, M.E.S. and Govindaraju, H.K. (2014). Evaluation of fracture toughness and Mechanical Properties of Aluminum Alloy 7075, T6 with Nickel Coating. Procedia Engineering, vol. 97, pp. 178–185. DOI: 10.1016/j.proeng.2014.12.240. Open DOISearch in Google Scholar

[36] Noroozi, A.H., Glinka, G. and Lambert, S. (2008). Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains. Engineering Fracture Mechanics, vol. 75, no. 2, pp. 188–206. DOI: 10.1016/j.engfracmech.2007.03.024. Open DOISearch in Google Scholar

[37] Shi, K., Cai, L. and Bao, C. (2014). Crack growth rate model under constant cyclic loading and effect of different singularity fields Procedia Materials Science, vol. 3, pp. 1566–1572. DOI: 10.1016/j.mspro.2014.06.253. Open DOISearch in Google Scholar

[38] Fatemi, A., Plaseied, A., Khosrovaneh, A.K. and Tanner, D. (2005). Application of bi-linear log-log S-N model to strain-controlled fatigue data of aluminum alloys and its effect on life predictions. International Journal of Fatigue, vol. 27, no. 9, pp. 1040–1050. DOI: 10.1016/j.ijfatigue.2005.03.003. Open DOISearch in Google Scholar

[39] Ribeiro, A.S., Borrego, L.P., De Jesus, A.M.P. and Costa, J.D.M. (2009). Comparison of the low-cycle fatigue properties betwee the 6082-T6 and 6061-T651 Aluminium Alloys. In 20th International Congress of Mechanical Engineering. November15-20, Gramado, RS, Brazil. Search in Google Scholar

[40] Han, J.W., Han, S.H., Shin, B.C. and Kim, J.H. (2012). Fatigue Crack Initiation and Propagation Life of Welded Joints. Key Engineering Materials, vol. 297–300, pp. 781–787. DOI: 10.4028/www.scientific.net/KEM.297-300.781. Open DOISearch in Google Scholar

[41] Mrowka, N.G., Sieniawski, J. and Nowotnik, A. (2009). Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy. Journal of Acheivements in Materials and Manufacturing Engineering, vol. 32, no. 2, pp. 162–170. Search in Google Scholar

[42] Pandey, K. and Chand, S. (2003). An energy based fatigue crack growth model. International Journal of Fatigue, vol. 25, no. 8, pp. 771–778. DOI: 10.1016/S0142-1123(03)00049-5. Open DOISearch in Google Scholar

[43] Noroozi, A., Glinka, G. and Lambert, S. (2007). A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force. International Journal of Fatigue, vol. 29, no. 9–11, pp. 1616–1633. DOI: 10.1016/j.ijfatigue.2006.12.008. Open DOISearch in Google Scholar

[44] Radon, J.C. (1982). A model for fatigue crack growth in a threshold region. International Journal of Fatigue, vol. 4, no. 3, pp. 161–166. DOI: 10.1016/0142-1123(82)90044-5. Open DOISearch in Google Scholar

[45] Noroozi, A., Glinka, G. and Lambert, S. (2005). A two parameter driving force for fatigue crack growth analysis. International Journal of Fatigue, vol. 27, no. 10–12, pp. 1277–1296. DOI: 10.1016/j.ijfatigue.2005.07.002. Open DOISearch in Google Scholar

[46] Benachour, M., Benguediab, M. and Benachour, N. (2013). Notch fatigue crack initiation and propagation life under constant amplitude loading through residual stress field. Advanced Materials Research, vol. 682, pp. 17–24. DOI: 10.4028/www.scientific.net/AMR.682.17. Open DOISearch in Google Scholar

[47] Tschegg, S.E.S. and Mayer, H. (2001). Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles. International Journal of Fatigue, vol. 23, pp. 231–237. DOI: 10.1016/S0142-1123(01)00167-0. Open DOISearch in Google Scholar

[48] Benachour, N., Hadjoui, A., Benachour, M. and Benguediab, M. (2011). Stress ratio and notch effect on fatigue crack initiation and propagation in 2024 Al-alloy. International Journal of Mechanical and Mechatronics Engineering, vol. 5, no. 7, pp. 1384–1387. Search in Google Scholar

[49] Grasso, M., Iorio, A., Xu, Y., Haritos, G., Mohin, M. and Chen, Y.K. (2017). An analytical model for the identification of the threshold of stress intensity factor range for crack growth. Advances in Materials Science and Engineering, vol. 2017, 3014172. DOI: 10.1155/2017/3014172. Open DOISearch in Google Scholar

[50] Forth, S.C., Newman, J.C. and Forman, R.G. (2002). Generating fatigue crack growth thresholds with constant amplitude loads. Fatigue, pp. 1–8. https://ntrs.nasa.gov/api/citations/20030014136/downloads/20030014136.pdf Search in Google Scholar

[51] Colin, J. (2010). Deformation history and load sequence effects on cumulative fatigue damage and life predictions. Thesis Doctor, University of Toledo Digital Repository. Search in Google Scholar

[52] Anand, L. and Parks, D.M. (2004). Defect-Free Fatigue. Lecture notes distributed in the unit 2.002 Mechanics and Materials II. Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, Spring, pp. 1–37. https://ocw.mit.edu/courses/2-002-mechanics-and-materials-ii-spring-2004/resources/lec21_notes/ Search in Google Scholar

[53] Dowling, N.E. (2004). Mean Stress Effects in Stress-Life and Strain-Life Fatigue. In 2nd SAE Brasil International Conference on Fatigue. SAE Technical Paper 2004-01-2227. DOI: 10.4271/2004-01-2227. Open DOISearch in Google Scholar

[54] Wanhill, R.J.H. (2009). Characteristic stress intensity factor correlations of fatigue crack growth in high strength alloys: reviews and completion of NLR investigations 1985-1990. NLR-TP-2009-256. The Netherlands: National Aerospace Laboratory NLR. Search in Google Scholar

[55] Musuva, J.K. and Radon, J.C. (2013). An elastic-plastic crack growth analysis using the J-integral concept. Search in Google Scholar

[56] Tzamtzis, A. and Kermanidis, A.T. (2016). Fatigue crack growth prediction in 2xxx AA with friction stir weld HAZ properties. Frattura ed Integrità Strutturale, vol. 35, pp. 396–404. DOI: 10.3221/IGF-ESIS.35.45. Open DOISearch in Google Scholar

[57] Vikram, N. and Kumar, R. (2013). Review on fatigue-crack growth and finite element method. International Journal of Scientific & Engineering Research, vol. 4, no. 4, pp. 833–843. Search in Google Scholar

[58] Chowdhury, P. and Sehitoglu, H. (2016). Mechanisms of fatigue crack growth – a critical digest of theoretical developments. Fatigue & Fracture of Engineering Materials & Structures, vol. 39, pp. 652–674, 2016. DOI: 10.1111/ffe.12392. Open DOISearch in Google Scholar

[59] Mann, T., Tveiten, B.W. and Härkegård, G. (2004). Fatigue of welded aluminium T-joints. In ESIS-ECF 15 Sweden, no. 1. From https://www.gruppofrattura.it/ocs/index.php/esis/ECF15/paper/viewFile/8703/4770 Search in Google Scholar

[60] Huang, X., Torgeir, M. and Cui, W. (2008). An engineering model of fatigue crack growth under variable amplitude loading. International Journal of Fatigue, vol. 30, no. 1, pp. 2–10. DOI: 10.1016/j.ijfatigue.2007.03.004. Open DOISearch in Google Scholar

eISSN:
2300-7591
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other