1. bookVolume 41 (2022): Issue 1 (March 2022)
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Soil Fauna of Ranibari Community Forest, Kathmandu, Nepal

Published Online: 22 Apr 2022
Volume & Issue: Volume 41 (2022) - Issue 1 (March 2022)
Page range: 17 - 25
Received: 23 Mar 2021
Accepted: 02 Sep 2021
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year

Ranibari Community Forest (RCF) is the important forest patch present within the highly urbanized Kathmandu Valley with information gaps on soil fauna. This study aimed to explore the soil meso and macrofauna of the forest. Fourteen random quadrats (1 × 1 m2) were laid within seven blocks. Leaf litter samples and soil cores were collected, screened, sieved, and searched under a white sheet, once a fortnight from May to November 2019. The results showed that the diversity, abundance, and richness of soil fauna were the highest in the summer season (H´ = 2.897, abundance = 1,973, S = 84) dominated by Collembola. The Soil Biological Quality Index (QBS-ar) value was also found to be the highest in summer (QBS-ar = 417) and successively decreased in succeeding seasons. Soil fauna was diverse and evenly distributed in soil layers throughout the seasons, but the abundance was greater in leaf litters, particularly in summer. Fauna like Chilopoda, Diplopoda, Haplotaxida, and Isopoda were seen to be affected negatively by soil temperature in summer and autumn seasons. Soil moisture content was found to be positively correlated with immature insects, earthworms, and millipedes in the rainy and autumn seasons. Besides, the pH of the soil was seen to affect Diplura only in the autumn season. The relation of fauna with the physicochemical parameters (temperature, moisture, and pH) and also with other taxa showed their ecological roles and adaptation to a specific microclimate.


Baretta, D., Brescovit, A. D., Knysak, I. & Cardoso E.J.B.N. (2007). Trap and soil monolith sampled edaphic spiders (Arachnida: Araneae) in Araucaria angustifolia forest. Scientia Agricola, 64(4), 375–383.10.1590/S0103-90162007000400008 Search in Google Scholar

Beylich, A., Oberholzer, H.R., Schrader, S., Höper, H. & Wilke B.M. (2010). Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res., 109(2), 133–143. DOI: 10.1016/j. still.2010.05.010. Search in Google Scholar

Brietbart, R. (1988). Soil testing procedures for soil survey: Laboratory procedure manual. Gabrone: Agricultural Information Services, Ministry of Agriculture. Search in Google Scholar

Climate-Data (2021). Kathmandu climate. https://en.climate-data.org/asia/nepal/central-development-region/kathmandu-1137/. Search in Google Scholar

Daily, G.C., Alexander, S., Ehrlich, P.R., Goulder, L., Lubchenco, J., Matson, P.A., Mooney, H.A., Postel, S., Schneider, S.H., Tilman, D. & Woodwell G.M. (1997). Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues in Ecology, 2, 1–16. Search in Google Scholar

Decaëns, T., Jiménez, J.J., Gioia, C., Measey, G.J. & Lavelle P. (2006). The values of soil animals for conservation biology. Eur. J. Soil Biol., 42, 23–38. DOI: 10.1016/j.ejsobi.2006. Search in Google Scholar

Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balík, V., Kalčík, J. & Řehounková K. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur. J. Soil Biol., 44(1), 109–121. DOI: 10.1016/j. ejsobi.2007.09.002. Search in Google Scholar

Galli, L., Capurro, M., Menta, C. & Rellini I. (2014). Is the QBS-ar index a good tool to detect the soil quality in Mediterranean areas? A cork tree Quercus suber L. (Fagaceae) wood as a case of study. Italian Journal of Zoology, 81(1), 126–135. DOI: 10.1080/11250003.2013.875601.10.1080/11250003.2013.875601 Search in Google Scholar

Gerlach, J., Samways, M. & Pryke J. (2013). Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J. Insect Conserv., 17(4), 831–850. DOI: 10.1007/s10841-013-9565-9.10.1007/s10841-013-9565-9 Search in Google Scholar

Gonzalez, G. & Seastedt T.R. (2001). Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology, 82(4), 955–964. DOI: 10.1890/0012-9658(2001)082[0955:SFAPLD]2.0.CO;2. Search in Google Scholar

Gupta, S.K. (1985). Plant mites of India. Calcutta: Sri Aurobindo Press. Search in Google Scholar

Haimi, J., Laamanen, J., Penttinen, R., Räty, M., Koponen, S., Kellomäki, S. & Niemelä P. (2005). Impacts of elevated CO2 and temperature on the soil fauna of boreal forests. Appl. Soil Ecol., 30(2), 104–112. DOI: 10.1016/j. apsoil.2005.02.006. Search in Google Scholar

Johnson, N.F., & Triplehorn C.A. (2005). Borror and DeLong‘s introduction to the study of insects. Cole Belmont: Thompson Brooks. Search in Google Scholar

Julka, J.M. (1988). Fauna of India: Megadrile Oligochaeta (earthworms). Calcutta: Doon Phototype Printers. Search in Google Scholar

Kautz, T., López-Fando, C. & Ellmer F. (2006). Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Appl. Soil Ecol., 33(3), 278–285. DOI: 10.1016/j.apsoil.2005. Search in Google Scholar

Koehler, H.H. (1992). The use of soil mesofauna for the judgement of chemical impact on ecosystems. Agric. Ecosyst. Environ., 40, 193–205. DOI: 10.1016/0167-8809(92)90092-P.10.1016/0167-8809(92)90092-P Search in Google Scholar

Kooch, Y. & Noghre N. (2020). The effect of shrubland and grassland vegetation types on soil fauna and flora activities in a mountainous semi-arid landscape of Iran. Sci. Total Environ., 703. DOI: 10.1016/j.scitotenv.2019.135497.10.1016/j.scitotenv.2019.135497 Search in Google Scholar

Korboulewsky, N., Perez, G. & Chauvat M. (2016). How tree diversity affects soil fauna diversity: a review. Soil Biol. Biochem., 94, 94–106. DOI: 10.1016/j.soilbio.2015. Search in Google Scholar

Lavelle, P. (1996). Diversity of soil fauna and ecosystem function. Biology International, 33, 3–16. Search in Google Scholar

Lavelle, P. (1997). Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Adv. Ecol. Res., 27, 93–132. DOI: 10.1016/S0065-2504(08)60007-0.10.1016/S0065-2504(08)60007-0 Search in Google Scholar

Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P. & Rossi P.-J. (2006). Soil invertebrates and ecosystem services. Eur. J. Soil Biol., 42, 3–15. DOI: 10.1016/j.ejsobi.2006. Search in Google Scholar

Lindberg, N. (2003). Soil fauna and global change- responses to experimental drought, irrigation, fertilization and soil warming. Ph.D. thesis, Swedish University of Agricultural Science, Uppsala, Sweden. Search in Google Scholar

Liu, Y., Wang, L., He, R., Chen, Y., Xu, Z., Tan, B., Zhang, L., Xiao, J., Zhu, P., Chen L., Guo, L. & Zhang J. (2019). Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep., 9(1). DOI: 10.1038/s41598-019-47072-0.10.1038/s41598-019-47072-0664665731332217 Search in Google Scholar

Lubbers, I.M., Berg, M.P., De Deyn, G.B., Putten, W.H. & Groenigen J.W. (2020). Soil fauna diversity increases CO2 but suppresses N2O emissions from soil. Global Change Biology, 26(3), 1886–1898. DOI: 10.1111/gcb.14860.10.1111/gcb.14860707887831587448 Search in Google Scholar

Madej, G., Barczyk, G. & Gdawiec M. (2011). Evaluation of soil biological quality index (QBS-ar): Its sensitivity and usefulness in the post-mining chronosequence-preliminary research. Pol. J. Environ. Stud., 20(5), 1367–1372. Search in Google Scholar

Menta, C. (2012). Soil fauna diversity - function, soil degradation, biological indices, soil restoration. In G.A. Lameed (Ed.), Biodiversity conservation and utilizationn in a diverse world (pp. 59–94). IntechOpen.10.5772/51091 Search in Google Scholar

Menta, C., Conti, F.D., Pinto, S. & Bodini A. (2018). Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators, 85, 773–780. DOI: 10.1016/j.ecolind.2017. Search in Google Scholar

Menta, C. & Remelli S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11(1), 54. DOI: 10.3390/insects11010054.10.3390/insects11010054702245131963103 Search in Google Scholar

Mitra, S.C., Dey, A. & Ramakrishna (2004). Pictorial handbook- Indian land snails (selected species). Kolkata: Calcutta Repro Graphics. Search in Google Scholar

Mulder, C. & Elser J.J. (2009). Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 15, 2730–2738. DOI: 10.1111/j.1365-2486.2009.01899.x.10.1111/j.1365-2486.2009.01899.x Search in Google Scholar

Nawaz, M., Bourrié, G. & Trolard F. (2012). Soil compaction impact and modelling: A review. Agronomy for Sustainable Development, 33(2), 291–309. DOI: 10.1007/s13593-011-0071-8.10.1007/s13593-011-0071-8 Search in Google Scholar

Parisi, V., Menta, C., Gardi, C. & Jacomini C. (2003). Evaluation of soil quality and biodiversity in Italy: The biological quality of soil index (QBS) approach. In Paper presented at the Proceedings of OECD expert meeting on ‘Agricultural impacts on soil erosion and soil biodiversity: Developing indicators for policy analysis’. Rome. Search in Google Scholar

Parisi, V., Menta, C., Gardi, C., Jacomini, C. & Mozzanica E. (2005). Micro-arthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric. Ecosyst. Environ., 105(1–2), 323–333. DOI: 10.1016/j.agee.2004. Search in Google Scholar

Pereira, J.M., Segat, J.C., Baretta, D., Vasconcellos, R.L.F., Baretta, C.R.D.M. & Cardoso E.J.B.N. (2017). Soil macrofauna as a soil quality indicator in native and replanted Araucaria angustifolia forests. Revista Brasileira de Ciência do Solo, 41. DOI: 10.1590/18069657rbcs20160261.10.1590/18069657rbcs20160261 Search in Google Scholar

Qian, H. & Ricklefs R.E. (2008). Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecol. Lett., 11(6), 547–553. DOI: 10.1111/j.1461-0248.2008.01168.x.10.1111/j.1461-0248.2008.01168.x18318717 Search in Google Scholar

Reynolds, S.G. (1970). The gravimetric method of soil moisture determination. J. Hydrol., 11, 258–273. DOI: 10.1016/0022-1694(70)90066-1.10.1016/0022-1694(70)90066-1 Search in Google Scholar

Salmon, S., Artuso, N., Frizzera, L. & Zampedri R. (2008). Relationships between soil fauna communities and humus forms: response to forest dynamics and solar radiation. Soil Biol. Biochem., 40(7), 1707–1715. DOI: 10.1016/j.soilbio.2008. Search in Google Scholar

Santos, M.A.B., Oliveira Filho, L.C.I., Pompeo, P.N., Ortiz, D.C., Mafra, Á.L., Klauberg Filho, O. & Baretta D. (2018). Morphological diversity of springtails in land use systems. Revista Brasileira de Ciência do Solo, 42. DOI: 10.1590/18069657rbcs20170277.10.1590/18069657rbcs20170277 Search in Google Scholar

Seitz, S., Goebes, P., Zumstein, P., Assmann, T., Kühn, P., Niklaus, P.A., Schuldt, A. & Scholten T. (2015). The influence of leaf litter diversity and soil fauna on initial soil erosion in subtropical forests. Earth Surface Processes and Landforms, 40(11), 1439–1447. DOI: 10.1002/esp.3726.10.1002/esp.3726 Search in Google Scholar

Su, J.C., Debinski, D.M., Jakubauskas, M.E. & Kindscher K. (2004). Beyond species richness: Community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv. Biol., 18(1), 167–173. DOI: 10.1111/j.1523-1739.2004.00337.x.10.1111/j.1523-1739.2004.00337.x Search in Google Scholar

Szlavecz, K., Vilisics, F., Toth, Z. & Hornung E. (2018). Terrestrial isopods in urban environments: An overview. Zookeys, 801, 97–126. DOI: 10.3897/zookeys.801.29580.10.3897/zookeys.801.29580628825730564033 Search in Google Scholar

Tan, X., Chang, S.X. & Kabzems R. (2005). Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. For. Ecol. Manag., 217(2–3), 158–170. DOI: 10.1016/j.foreco.2005. Search in Google Scholar

Tan, X., Chang, S.X. & Kabzems R. (2007). Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol. Fertil. Soils, 44(3), 471–479. DOI: 10.1007/s00374-007-0229-3.10.1007/s00374-007-0229-3 Search in Google Scholar

Tikader, B.K. (1987). Handbook Indian spiders. Calcutta: Navana Printing Works. Uhey, D.A., Riskas, H.L., Smith, A.D. & Hofstetter R.W. (2020). Ground-dwelling arthropods of pinyon-juniper woodlands: Arthropod community patterns are driven by climate and overall plant productivity, not host tree species. PLoS One, 15(8). DOI: 10.1371/journal. pone.0238219. Search in Google Scholar

Wang, S., Tan, Y., Fan, H., Ruan, H. & Zheng A. (2015). Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Appl. Soil Ecol., 89, 69–75. DOI: 10.1016/j.apsoil.2015. Search in Google Scholar

Ward, D.F. & Larivière M.C. (2004). Terrestrial invertebrate surveys and rapid biodiversity assessment in New Zealand: lessons from Australia. N. Z. J. Ecol., 28(1), 151–159. Search in Google Scholar

Wolters, V., Bengtsson, J. & Zaitsev A.S. (2006). Relationship among the species richness of different taxa. Ecology, 87(8), 1886–1895. DOI: 10.1890/0012-9658(2006)87[1886:RATSRO]2.0.CO;2. Search in Google Scholar

Yang, Y., Wu, Q., Yang, W., Wu, F., Zhang, L., Xu, Z., Liu, Y., Tan, B., Li, H. & Zhou W. (2020). Temperature and soil nutrients drive the spatial distributions of soil macroinvertebrates on the eastern Tibetan plateau. Ecosphere, 11(3), e03075. DOI: 10.1002/ecs2.3075.10.1002/ecs2.3075 Search in Google Scholar

Yin, X., Ma, C., He, H., Wang, Z., Li, X., Fu, G., Liu, Y. & Zheng Y. (2018). Distribution and diversity patterns of soil fauna in different salinization habitats of Songnen grasslands, China. Appl. Soil Ecol., 123, 375–383. DOI: 10.1016/j.apsoil.2017. Search in Google Scholar

Yorkina, N., Zhukov, O. & Chromysheva O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38(1), 1–10. DOI: 10.2478/eko-2019-0001.10.2478/eko-2019-0001 Search in Google Scholar

Zagatto, M.R.G., Filho, L.C.O., Pompeo, P.N., Niva, C.C., Baretta, D. & Cardoso E.J.B.N. (2020). Mesofauna and macrofauna in soil and litter of mixed plantations. In E.J.B.N. Cardoso (Ed.), Mixed plantations of Eucalyptus and leguminous trees (pp. 155–172). Switzerland: Springer Nature. Search in Google Scholar

Zagatto, M.R.G., Niva, C.C., Thomazini, M.J., Baretta, D., Santos, A., Nadolny, H., Cardoso, G.B.X. & Brown G.G. (2017). Soil invertebrates in different land-use systems: How integrated production systems and seasonality affect soil mesofauna communities. Journal of Agricultural Science and Technology B, 7(3). 158–169. DOI: 10.17265/2161-6264/2017. Search in Google Scholar

Zagatto, M.R.G., Pereira, A.P.A., De Souza, A.J., Pereira, R.F., Baldesin, L.F., Pereira, C.M., Luis, F., Pereira, C.M. & Lopes R.V. (2019a). Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. For. Ecol. Manag., 433, 240-247. DOI: 10.1016/j.foreco.2018. Search in Google Scholar

Zagatto, M.R.G., Zan–o Júnior, L.A., Pereira, A.P.A., Estrada-Bonilla, G. & Cardoso E.J.B.N. (2019b). Soil mesofauna in consolidated land use systems: how management affects soil and litter invertebrates. Scientia Agricola, 76(2), 165–171. DOI: 10.1590/1678-992x-2017-0139.10.1590/1678-992x-2017-0139 Search in Google Scholar

Zhu, X., Gao, B., Yuan, S. & Hu Y. (2010). Community structure and seasonal variation of soil arthropods in the forest-steppe ecotone of the mountainous region in Northern Hebei, China. Journal of Mountain Science, 7(2), 187–196. DOI: 10.1007/s11629-010-0198-0.10.1007/s11629-010-0198-0 Search in Google Scholar

Zhu, X., Hu, Y. & Gao B. (2011). Influence of environment of forest-steppe ecotone on soil arthropods community in Northern Hebei, China. Procedia Environmental Sciences, 10, 1862–1867. DOI: 10.1016/j. proenv.2011.09.291. Search in Google Scholar

Zhukov, O., Kunah, O., Dubinina, Y. & Novikova V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(4), 301–327. DOI: 10.2478/eko-2018-0023.10.2478/eko-2018-0023 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo