1. bookVolume 40 (2021): Issue 1 (March 2021)
Journal Details
License
Format
Journal
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

The Relationship Between Soil Heterogeneity and Cellulolytic Activity

Published Online: 18 Apr 2021
Page range: 1 - 7
Received: 12 May 2019
Accepted: 30 Jul 2019
Journal Details
License
Format
Journal
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

This article examines the relationship between soil heterogeneity and cellulolytic activity. The investigated substrate was a typical chernozem (black soil). Cellulolytic activity was studied by the application method across a regular grid of 7×15 points (21×45 m). The distance between the measurement points was 3 m. Soil heterogeneity determined by the measurement of soil penetration resistance using a hand penetrometer Eijkelkamp. Measurements of soil penetration resistance were fixed to a depth of 100 cm at intervals of 5 cm. Geostatistical analysis showed a high level of spatial dependence of soil cellulolytic activity. Significant correlations were obtained between the spatial distribution of cellulolytic activity and soil penetration resistance at different depths. The results reflect a significant correlation of soil conditions at different depths.

Keywords

Andrusevych, E.V. (2014). Ecological space of the sod-lithogenic soils on the red-brown clays animal community. Gruntoznavstvо, 15, 1–2. DOI: 10.15421/041411.Search in Google Scholar

Andrusevych, E.V. & Shtirts Yu.A. (2014). Ecological diversity of vegetation on lithogenic soil in the reclamation land of the Nicopol manganese ore basin. Industrial Botany, 14, 115–127.Search in Google Scholar

Bathke, G.R., Cassel, D.K., Hargrove, W.L. & Porter P.M. (1992). Modification of soil physical properties and growth response. Soil Sci., 154, 316–329.Search in Google Scholar

Berg, B., Karenlampi, L. & Veum A.K. (1975). Comparisons of decomposition rates measured by means of cellulose. In F.E. Wielgolaski (Ed.), Fennoscandian tundra ecosystems. Part 1. Plants and microorganisms (рр. 261−267). Berlin: Springer.Search in Google Scholar

Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F. & Konopka A.E. (1994). Field scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 58, 1501–1511. DOI: 10.2136/sssaj1994.03615995005800050033x.Search in Google Scholar

Diggle, P.J. & Ribeiro J.R. (2000). Model based geostatistics. Sao Paulo: Associacao Brasileira de Estatistica.Search in Google Scholar

Faechner, T., Pyrcz, M.J. & Deutsch C.V. (2000). Soil remediation decision making in presence of uncertainty in crop yield response. Geoderma, 97, 21–38. DOI: 10.1016/S0016-7061(00)00024-0.Search in Google Scholar

Grunwald, S., McSweeney, K., Rooney, D.J. & Lowery B. (2001). Soil layer models created with profile cone penetrometer data. Geoderma, 103(1−2), 181–201. DOI: 10.1016/S0016-7061(01)00076-3.Search in Google Scholar

Kramarenko, S.S, Kunakh, O.N., Zhukov, A.V. & Andrusevich E.V. (2014). Analysis of the spatial distribution patterns of the land snail populations: a geostatistic method approach. The Bulletin of the Russian Far East Malacological Society, 18, 5–40.Search in Google Scholar

Kunakh, O.N., Kramarenko, S.S., Zhukov, A.V., Zadorozhnaya, G.A. & Kramarenko A.S. (2018). Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae). Ruthenica, 28 (3), 91−99. http:www.ruthenica.comSearch in Google Scholar

Latter, P.M. & Harrison A.F. (1988). Decomposition of cellulose in relation to soil properties and plant growth. In A.F. Harrison, P.M. Latter & D.W.H. Walton (Eds.), Cotton strip assay: an index of decomposition in soils (pp. 68–71). Grange-over-Sands: Institute of Terrestrial Ecology.Search in Google Scholar

Legendre, P. & Fortin M.J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107–138. https://www.jstor.org/stable/20038425Search in Google Scholar

Medina, C., Camacho-Tamayo, J.H. & Cortés С.А. (2012). Soil penetration resistance analysis by multivariate and geostatistical methods. Engenharia Agrícola, 32(1), 91–101. DOI: 10.1590/S0100-69162012000100010.Search in Google Scholar

Medvedev, V.V. (2009). Soild and soildgram in research on the treatment of soil. Pochvovedenie, 3, 325–336.Search in Google Scholar

Medvedev, V.V. (2013). Time and spatial heterogenization of soil plouger up. Gruntoznavstvo, 14 (1–2), 5–22.Search in Google Scholar

Myšák, J., Horsák, M., Svobodová, E. & Cernohorsky N. (2013). Small-scale distribution of terrestrial snails: patterns of species richness and abundance related to area. J. Molluscan Stud., 79(2), 118–127. DOI: 10.1093/mollus/eyt002.Search in Google Scholar

Salvador-Blanes, S., Cornu, S., Couturier, A., King, D. & Macaire J.J. (2006). Morphological and geochemical properties of soil accumulated in hedge-induced terraces in the Massif Central, France. Soil Till. Res., 85(1–2), 62–77. DOI: 10.1016/j.still.2004.12.008.Search in Google Scholar

Shahbazi, F., Ali, N. & Najaf N. (2013). Geostatistical analysis for predicting soil biological maps under different scenarios of land use Eur. J. Soil Biol., 55, 20–27. DOI: 10.1016/j.ejsobi.2012.10.009.Search in Google Scholar

Soracco, C.G., Lozano, L.A., Sarli, G.O., Gelati, P.R. & Filgueira R.R. (2010). Anisotropy of saturated hydraulic conductivity in a soil under conservation and no-till treatments. Soil Till. Res., 109, 18–22. DOI: 10.1016/j. still.2010.03.013.Search in Google Scholar

Swift, M.J., Heal, О.W. & Anderson J.M. (1979). Decomposition in terrestrial ecosystems. Oxford: Blackwell Scientific.Search in Google Scholar

Tryfanova, M., Zadorozhnaya, G. & Zhukova J. (2014). Gray heron colony impact on soil cellulolytic activity. Visnyk of Lviv University, Biological Series, 65, 245–254.Search in Google Scholar

Valbuena Calderon, C.A., Martines, L.J. & Giraldo Henao R. (2008). Spatial variability of soil properties and yield relationship in a mango crop (Mangifera indica L.). Revista Brasileira de Fruticultura, 30(4), 1146−1151. DOI: 10.1590/S0100-29452008000400049.Search in Google Scholar

Webster, R. & Oliver M.A. (2007). Geostatistics for environmental scientists. Hoboken: John Wiley & Sons.Search in Google Scholar

Zadorozhnaya, G.A. (2018). Spatiotemporal dynamics of soil penetration resistance of recultivated soil. Ekológia (Bratislava), 37(3), 82–89. DOI: 10.2478/eko-2018-0008.Search in Google Scholar

Zadorozhnaya, G.A. & Andrusevych K. (2018). Recultivated soil heterogenety: ecological aspect. Applied Biotechnology in Mining: Proceedings of the International Conference (p. 53). Dnipro, April 25–27, 2018. Dnipro: National Technical University “Dnipro Polytechnic”.Search in Google Scholar

Zadorozhnaya, G.A., Andrusevych, K.V. & Zhukov O.V. (2018). Soil heterogeneity after recultivation: ecological aspect. Folia Oecologica, 45(1), 46−52. DOI: 10.2478/foecol-2018-0005.Search in Google Scholar

Zhukov, A.V. & Lyadskaya І.V. (2009). Cellulosolytic activity of technosemas in the experimental area of land reclamation caused by the mining industry. Bulletin of Donetsk National University, Series A: Natural Sciences, 2, 286−290.Search in Google Scholar

Zhukov, A.V. & Zadorozhnaya G.A. (2015). The phenomenon of soil ectomorphs. In V All Ukrainian Congress of Ecologists with International Participation (Ecology-2015), Collection of scientific works (p. 190). Vinnitsa: ТОV «Nilan-LDT».Search in Google Scholar

Zhukov, A.V. & Zadorozhnaya G.A. (2016). Spatial heterogeneity of mechanical impedance of atypical chernozem: the ecological aproach. Ekológia (Bratislava), 35(3), 263–278. DOI: 10.1515/eko-2016-0021.Search in Google Scholar

Zhukov, A.V. & Zadorozhnaya G.A. (2017). The dynamics of the replantozems spatial heterogeneity. Principles of the Ecology, 6, 1(12), 226−237.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo