Open Access

Light Assisted Phytoextraction of Landfill Leachate: An Effective Tool to Attenuate Pollutants in Landfill Leachate

, , , , ,  and   
Apr 10, 2025

Cite
Download Cover

Vaverková M. Landfill Impacts on the Environment - Review. Geosciences 2019;9:431. DOI: 10.3390/geosciences9100431. Search in Google Scholar

Ren S, Zhang L, Zhang Q, Zhang F, Jiang H, Li X, et al. Anammox-mediated municipal solid waste leachate treatment: A critical review. Bioresource Technol. 2022;361:127715. DOI: 10.1016/j.biortech.2022.127715. Search in Google Scholar

Wijekoon P, Koliyabandara PA, Cooray AT, Lam SS, Athapattu BC, Vithanage M, et al. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. J Hazard Mater. 2022;421:126627. DOI: 10.1016/j.jhazmat.2021.126627. Search in Google Scholar

Gonzalez-Valencia R, Magana-Rodriguez F, Cristóbal J, Thalasso F. Hotspot detection and spatial distribution of methane emissions from landfills by a surface probe method. Waste Manage. 2016;55:299-305. DOI: 10.1016/j.wasman.2016.03.004. Search in Google Scholar

Feng SJ, Chen ZW, Chen HX, Zheng QT, Liu R. Slope stability of landfills considering leachate recirculation using vertical wells. Eng Geol. 2018;241:76-85. DOI: 10.1016/j.enggeo.2018.05.013. Search in Google Scholar

Jovanov D, Vujić B, Vujić G. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills. J Environ Manage. 2018;216:32-40. DOI: 10.1016/j.jenvman.2017.08.039. Search in Google Scholar

Varjani S, Shahbeig H, Popat K, Patel Z, Vyas S, Shah AV, et al. Sustainable management of municipal solid waste through waste-to-energy technologies. Bioresource Technol. 2022;355:127247. DOI: 10.1016/j.biortech.2022.127247. Search in Google Scholar

Vaverková MD, Elbl J, Koda E, Adamcová D, Bilgin A, Lukas V, et al. Chemical composition and hazardous effects of leachate from the active municipal solid waste landfill surrounded by farmlands. Sustainability. 2020;12:4531. DOI: 10.3390/su12114531. Search in Google Scholar

Wang YN, Shi H, Wang Q, Wang H, Sun Y, Li W, et al. Insights into the landfill leachate properties and bacterial structure succession resulting from the colandfilling of municipal solid waste and incineration bottom ash. Bioresource Technol. 2022;361:127720. DOI: 10.1016/j.biortech.2022.127720. Search in Google Scholar

Vaverková MD, Adamcová D, Winkler J, Koda E, Červenková J, Podlasek A. Influence of a municipal solid waste landfill on the surrounding environment: Landfill vegetation as a potential risk of allergenic pollen. Int J Environ Res Public Health. 2019;16:5064. DOI: 10.3390/ijerph16245064. Search in Google Scholar

Cheng Z, Zhu S, Chen X, Wang L, Lou Z, Feng L. Variations and environmental impacts of odor emissions along the waste stream. J Hazard Mater. 2020;384:120912. DOI: 10.1016/j.jhazmat.2019.120912. Search in Google Scholar

Liu H, Yang P, Peng Y, Li L, Liu G, Wang X, et al. Pollution in the interflow from a simple landfill in a mountainous and hilly area in Southwest China. Sci Total Environ. 2021;793:148656. DOI: 10.1016/j.scitotenv.2021.148656. Search in Google Scholar

Srivastava AN, Chakma S. Dry tomb-bioreactor landfilling approach for enhanced biodegradation and biomethane generation from municipal solid waste co-disposed with sugar mill pressmud. Bioresource Technol. 2021;342:125895. DOI: 10.1016/j.biortech.2021.125895. Search in Google Scholar

Xie Y, Xue J, Gnanendran CT, Xie K. Geotechnical properties of fresh municipal solid wastes with different compositions under leachate exposure. Waste Manage. 2022;149:207-17. DOI: 10.1016/j.wasman.2022.06.020. Search in Google Scholar

Wei Z, Xu T, Zhao D. Treatment of per-and polyfluoroalkyl substances in landfill leachate: status, chemistry and prospects. Environ Sci Water Res Technol. 2019;5:1814-35. DOI: 10.1039/c9ew00645a. Search in Google Scholar

Jones DL, Williamson KL, Owen AG. Phytoremediation of landfill leachate. Waste Manage. 2006;26:825-37. DOI: 10.1016/j.wasman.2005.06.014. Search in Google Scholar

Madera-Parra CA, Pena-Salamanca EJ, Pena MR, Rousseau DPL, Lens PNL. Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in constructed wetlands. Int J Phytoremediat. 2015;17:16-24. DOI: 10.1080/15226514.2013.828014. Search in Google Scholar

Lindamulla LMLK, Jayawardene NKR, Wijerathne WSMKS, Othman M, Nanayakkara KGN, Jinadasa KBSN, et al. Treatment of mature landfill leachate in tropical climate using membrane bioreactors with different configurations. Chemosphere. 2022;307:136013. DOI: 10.1016/j.chemosphere.2022.136013. Search in Google Scholar

Yu D, Pei Y. Persulfate-enhanced continuous flow three-dimensional electrode dynamic reactor for treatment of landfill leachate. J Environ Manage. 2022;321:115890. DOI: 10.1016/j.jenvman.2022.115890. Search in Google Scholar

Anand N, Palani SG. A comprehensive investigation of toxicity and pollution potential of municipal solid waste landfill leachate. Sci Total Environ. 2022;838:155891. DOI: 10.1016/j.scitotenv.2022.155891. Search in Google Scholar

Brennan RB, Healy MG, Morrison L, Hynes S, Norton DC, Clifford E. Management of landfill leachate: The legacy of European Union Directives. Waste Manage. 2016;55:355-63. DOI: 10.1016/j.wasman.2015.10.010. Search in Google Scholar

Budi S, Suliasih BA, Othman MS, Heng LZ, Surif S. Toxicity identification evaluation of landfill leachate using fish, prawn and seed plant. Waste Manage. 2016;55:231-7. DOI: 10.1016/j.wasman.2015.09.022. Search in Google Scholar

Da Costa FM, Daflon SDA, Bila DM, da Fonseca FV, Campos JC. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes. Waste Manage. 2018;76:606-13. DOI: 10.1016/j.wasman.2018.02.030. Search in Google Scholar

Ergene D, Aksoy A, Sanin FD. Comprehensive analysis and modeling of landfill leachate. Waste Manage. 2022;145:48-59. DOI: 10.1016/j.wasman.2022.04.030. Search in Google Scholar

Yan H, Cousins IT, Zhang C, Zhou Q. Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater. Sci Total Environ. 2015;524-525:23-31. DOI: 10.1016/j.scitotenv.2015.03.111. Search in Google Scholar

Fuertes I, Gómez-Lavín S, Elizalde MP, Urtiaga A. Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates. Chemosphere. 2017;168:399-407. DOI: 10.1016/j.chemosphere.2016.10.072. Search in Google Scholar

Putra RS, Hastika FY. Removal of heavy metals from leachate using electro-assisted phytoremediation (EAPR) and up-take by water hyacinth (Eichornia crassipes). Indones J Chem. 2018;18:306-12. DOI: 10.22146/ijc.29713. Search in Google Scholar

Saxena V, Padhi SK, Dikshit PK, Pattanaik L. Recent developments in landfill leachate treatment: Aerobic granular reactor and its future prospects. Environ Nanotechnol Monit Manage. 2022;18:100689. DOI: 10.1016/j.enmm.2022.100689. Search in Google Scholar

Nevel L, Martens J, Oarts K, Verheyen K. Phytoextraction of metals from soils: How far from practice? Environ Pollut. 2007;150:34-40. DOI: 10.1016/j.envpol.2007.05.024. Search in Google Scholar

Elbl J, Lukas V, Sobotková J, Huňady I, Kintl A. Effect of drought on the development of Deschampsia caespitosa (L.) and selected soil parameters during a three-year lysimetric experiment. Life. 2023;13:745. DOI: 10.3390/life13030745. Search in Google Scholar

Wang X, Li QX, Heidel M, Wu Z, Yoshimoto A, Leong G, Pan D, Ako H. Comparative evaluation of industrial hemp varieties: Field experiments and phytoremediation in Hawaii. Ind Crops Prod. 2021;170:113683. DOI: 10.1016/j.indcrop.2021.113683. Search in Google Scholar

Lasat MM. Phytoextraction of toxic metals. A review of biological mechanisms. J Environ Qual. 2002;31:109-20. DOI: 10.2134/jeq2002.1090. Search in Google Scholar

Soudek P, Petrová Š, Vaňková R, Song J, Vaněk T. Accumulation of heavy metals using Sorghum sp. Chemosphere. 2014;104:15-24. DOI: 10.1016/j.chemosphere.2013.09.079. Search in Google Scholar

Li Y, Ma J, Li Y, Xiao C, Shen X, Chen J, et al. Nitrogen addition facilitates phytoremediation of PAH-Cd cocontaminated dumpsite soil by altering alfalfa growth and rhizosphere communities. Sci Total Environ. 2022;806:150610. DOI: 10.1016/j.scitotenv.2021.150610. Search in Google Scholar

Mayakaduwage S, Ekanayake A, Kurwadkar S, Rajapaksha AU, Vithanage M. Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. Environ Res. 2022;212:113311. DOI: 10.1016/j.envres.2022.113311. Search in Google Scholar

Kintl A, Šmeringai J, Sobotková J, Huňady I, Brtnický M, Hammerschmiedt T, et al. Potential for the accumulation of PTEs in the biomass of Melilotus albus Med. used for biomethane production. Appl Sci. 2023;13:4223. DOI: 10.3390/app13074223. Search in Google Scholar

He T, Zhang M, Baosheing J. Insight into the synergistic effect and products distribution during co-pyrolysis of phytoremediation residue and municipal sewage sludge through experiment and reaction force field simulation. Fuel. 2023;333:126326. DOI: 10.1016/j.fuel.2022.126326. Search in Google Scholar

Pandey VC, Bajpai O, Singh N. Energy crops in sustainable phytoremediation. Renew Sust Energy Rev. 2016;54:58-73. DOI: 10.1016/j.rser.2015.09.078. Search in Google Scholar

Vaverková MD, Zloch J, Adamcová D, Radziemska M, Vyhnánek T, Trojan V, et al. Landfill leachate effects on germination and seedling growth of hemp cultivars (Cannabis sativa L.). Waste Biomass Valor. 2019;10:369-76. DOI: 10.1007/s12649-017-0058-z. Search in Google Scholar

Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health. 2017;14:1504. DOI: 10.3390/ijerph14121504. Search in Google Scholar

Burges A, Oustriere N, Galende M, Marchand L, Bes CM, Paidjan E, et al. Phytomanagement with grassy species, compost and dolomitic limestone rehabilitates a meadow at a wood preservation site. Ecol Eng. 2021;160:106132. DOI: 10.1016/j.ecoleng.2020.106132. Search in Google Scholar

Timalsina H, Gyawali T, Ghimire S, Paudel SR. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Chemosphere. 2022;306:135581. DOI: 10.1016/j.chemosphere.2022.135581. Search in Google Scholar

OECD. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, OECD Guidelines for the Testing of Chemicals, Section 2. Paris: OECD Publishing, 2006. DOI: 10.1787/9789264070066-en. Search in Google Scholar

Hernández A, Loera N, Contreras M, Fischer L, Sánchez D. Comparison between Lactuca sativa L. and Lolium perenne: Phytoextraction Capacity of Ni, Fe, and Co from Galvanoplastic Industry. In: Wang T, et al. Energy Technology 2019. The Minerals, Metals Materials Series. Cham: Springer; DOI: 10.1007/978-3-030-06209-5_14. Search in Google Scholar

Luo J, Cao M, Zhang C, Wu J, Gu XWS. The influence of light combination on the physicochemical characteristics and enzymatic activity of soil with multi-metal pollution in phytoremediation. J Hazard Mater. 2020;393:122406. DOI: 10.1016/j.jhazmat.2020.122406. Search in Google Scholar

Bagheri M, Al-jabery K, Wunsch DC, Burken JG. A deeper look at plant uptake of environmental contaminants using intelligent approaches. Sci Total Environ. 2019;651:561-9. DOI: 10.1016/j.scitotenv.2018.09.048. Search in Google Scholar

Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, et al. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotox Environ Safety. 2014;106:164-72. DOI: 10.1016/j.ecoenv.2014.03.007. Search in Google Scholar

Ma P, Bai TH, Wang XQ, Ma FW. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought. J Integr Agric. 2015;14:1755-66. DOI: 10.1016/S2095-3119(15)61148-0. Search in Google Scholar

Dong C, Fu Y, Liu G, Liu H. Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agron Crop Sci. 2014;200:219-30. DOI: 10.1111/jac.12059. Search in Google Scholar

Levine LH, Paré PW. Antioxidant capacity reduced in scallions grown under elevated CO2 independent of assayed light intensity. Adv Space Res. 2009;44:887-94. DOI: 10.1016/j.asr.2009.06.017. Search in Google Scholar

Ning W, Yang Y, Chen W, Li R, Cao M, Luo J. Effect of light combination on the characteristics of dissolved organic matter and chemical forms of Cd in the rhizosphere of Arabidopsis thaliana involved in phytoremediation. Ecotoxicol Environ Safety. 2022;231:113212. DOI: 10.1016/j.ecoenv.2022.113212. Search in Google Scholar

Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and opportunities of light-emitting diode (LED) as key to modulate antioxidant compounds in plants. A review. Antioxidants. 2020;10:42. DOI: 10.3390/antiox10010042. Search in Google Scholar

Fu Y, Li HY, Yu J, Liu H, Cao ZY, Manukovsky NS, Liu H. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. var. youmaicai). Sci Hortic. 2017;214:51-7. DOI: 10.1016/j.scienta.2016.11.020. Search in Google Scholar

Atta M, Idris A, Bukhari A, Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technol. 2013;148:373-8. DOI: 10.1016/j.biortech.2013.08.162. Search in Google Scholar

Choi YK, Kumaran RS, Jeon HJ, Song HJ, Yang YH, Lee SH, et al. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus. Spectrochim Acta A Mol Biomol Spectrosc. 2015;145:245-53. DOI: 10.1016/j.saa.2015.03.035. Search in Google Scholar

Santa-Cruz J, Robinson B, Krutyakov YA, Shapoval OA, Peñaloza P, Yáñez C, et al. An assessment of the feasibility of phytoextraction for the stripping of bioavailable metals from contaminated soils. Environ Toxicol Chem. 2022;42:558-65. DOI: 10.1002/etc.5554. Search in Google Scholar

Kwon HK, Jeon JY, Oh SJ. Potential for heavy metal (copper and zinc) removal from contaminated marine sediments using microalgae and light emitting diodes. Ocean Sci J. 2017;52:57-66. DOI: 10.1007/s12601-017-0001-z. Search in Google Scholar

Koopmans GF, Römkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, et al. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut. 2008;156:905-14. DOI: 10.1016/j.envpol.2008.05.029. Search in Google Scholar

ČSN EN ISO 11885. Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Geneva: ISO - International Organization for Standardization; 2007. Available from: https://seznamcsn.agentura-cas.cz/Vysledky.aspx. Search in Google Scholar

ČSN 75 7440. Water quality - Determination of total mercury by thermal decomposition, amalgamation and atomic absorption spectrometry. Praha: Czech Standardization Agency; 1999. Available from: https://seznamcsn.agentura-cas.cz/Vysledky.aspx. Search in Google Scholar

Šourková M, Adamcová D, Zloch J, Skutnik Z, Vaverkova MD. Evaluation of the phytotoxicity of leachate form a municipal solid waste landfill: The case study of Bukov landfill. Environments. 2020;7:111. DOI: 10.3390/environments7120111. Search in Google Scholar

Vasile GG, Tenea AG, Dinu C, Iordache AMM, Gheorghe S, Mureseanu M, et al. Bioavailability, accumulation and distribution of toxic metals (As, Cd, Ni and Pb) and their impact on Sinapis alba plant nutrient metabolism. Int J Environ Res Public Health. 2021;18:12947. DOI: 10.3390/ijerph182412947. Search in Google Scholar

Palm ER, Nissim WG, Adamcová D, Podlasek A, Jakimiuk A, Vaverková MD. Sinapis alba L. and Triticum aestivum L. as biotest model species for evaluating municipal solid waste leachate toxicity. J Environ Manage. 2022;302:114012. DOI: 10.1016/j.jenvman.2021.114012. Search in Google Scholar

Lu W, Li Z, Shao Z, Zheng C, Zou H, Zhang J. Lead tolerance and enrichment characteristics of several ornamentals under hydroponic culture. Bull Environ Contam Toxicol. 2020;105:166-72. DOI: 10.1007/s00128-020-02905-x. Search in Google Scholar

Ahmad A. Phytoremediation of heavy metals and total petroleum hydrocarbon and nutrients enhancement of Typha latifolia in petroleum secondary effluent for biomass growth. Environ Sci Pollut Res. 2022;29:5777-86. DOI: 10.1007/s11356-021-16016-5. Search in Google Scholar

Malayeri BE, Chehregani A, Yousefi N, Lorestani B. Identification of the hyper accumulator plants in copper and iron mine in Iran. Pak J Biol Sci. 2008;11:490-2. DOI: 10.3923/pjbs.2008.490.492. Search in Google Scholar

Ayeni O. Assessment of heavy metals in wastewater obtained from an industrial area in Ibadan, Nigeria. RMZ - Materials and the Geoenvironment. 2014;61:19-24. URN:NBN:SI:doc-J42FIJT1. Available from: http://www.dlib.si. Search in Google Scholar

Chiroma TM, Ebewele RO, Hymore FK. Comparative assessment of heavy metal levels in soil, vegetables and urban grey water used for irrigation in Yola and Kano. Int Ref J Eng Sci. 2014;3:1-9. Available from: https://www.irjes.com/Papers/vol3-issue2/A03020109.pdf. Search in Google Scholar

Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH. Present and long-term composition of MSW landfill leachate: A review. Crit Rev Env Sci Technol. 2002;32:297-336. DOI: 10.1080/10643380290813462. Search in Google Scholar

Zhang Z, Zhang N, Zhao M, Zhang Y, Yang W, Liu B. Occurrence and pollution risk assessment of emerging contaminants in groundwater in the vicinity of a typical municipal landfill in northeastern China. J Hydrol. 2025;648:132408. DOI: 10.1016/j.jhydrol.2024.132408. Search in Google Scholar

Yang X, Jia Ch, Yao Y, Yang T, Shao S. Precise management and control around the landfill integrating artificial intelligence and groundwater pollution risks. Chemosphere. 2024;364: 143185. DOI: 10.1016/j.chemosphere.2024.143185. Search in Google Scholar

Adamcová D, Radziemska M, Ridošková A, Bartoň S, Pelcová P, Elbl J, et al. Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere. 2017;185:1011-8. DOI: 10.1016/j.chemosphere.2017.07.060. Search in Google Scholar

Vaverková MD, Elbl J, Radziemska M, Adamcová D, Kintl A, Baláková L, et al. Environmental risk assessment and consequences of municipal solid waste disposal. Chemosphere. 2018;208:569-78. DOI: 10.1016/j.chemosphere.2018.06.026. Search in Google Scholar

Salehi N, Azhdarpoor A, Shirdarreh M. The effect of different levels of leachate on phytoremediation of pyrene-contaminated soil and simultaneous extraction of lead and cadmium. Chemosphere. 2020;246:125845. DOI: 10.1016/j.chemosphere.2020.125845. Search in Google Scholar

Sayago UFC, Castro YP, Rivera LRC, Mariaca AG. Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes (review). Environ Monit Assess. 2020;192:141. DOI: 10.1007/s10661-019-8032-9. Search in Google Scholar

Elbl J, Lukas V, Sobotková J, Huňady I, Kintl A. Effect of drought on the development of Deschampsia caespitosa (L.) and selected soil parameters during a three-year lysimetric experiment. Life. 2023;13:745. DOI: 10.3390/life13030745. Search in Google Scholar

Kacálková L, Tlustoš P, Száková J. Phytoextraction of cadmium, copper, zinc and mercury. Plant Soil Environ. 2009;55:295-304. DOI: 10.17221/100/2009-PSE. Search in Google Scholar

Turan M, Esringü A. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ. 2007;53:7-15. DOI: 10.17221/3188-PSE. Search in Google Scholar

Evangelou MWH, Kutschinski-Klöss S, Ebel M, Schaeffer A. Potential of Borago officinalis, Sinapis alba L. and Phacelia boratus for phytoextraction of Cd and Pb from soil. Water Air Soil Pollut. 2007;182:407-16. DOI: 10.1007/s11270-007-9351-y. Search in Google Scholar

Fargašová A. Phytotoxic Effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. Seedlings and their Accumulation in Roots and Shoots. Biol. Plantarum. 2001;44:471-3. DOI: 10.1023/A:1012456507827. Search in Google Scholar