1. bookVolume 28 (2021): Issue 1 (March 2021)
Journal Details
First Published
08 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Mobile Gas Chromatographs Coupled with Mass and Ion Mobility Spectrometers and their Applications

Published Online: 23 Apr 2021
Page range: 29 - 37
Journal Details
First Published
08 Nov 2011
Publication timeframe
4 times per year

Chemical analysis of different materials at the place where analytes are present (on-site analysis) has several advantages in comparison to analysis of these materials after delivering the samples to laboratory. Mobile devices, possessing expected properties in terms of using energy, mass and volume are needed for such analyses. The obtained results should be comparable to those obtained with the stationary instruments. Mass and ion mobility spectrometers are examples of the instruments fulfilling these requirements. At the beginning, the article describes the developments in combining of mass and ion mobility spectrometers (MS, IMS) with miniature gas chromatographs (GC). Both systems are used for analyses in the field, mainly for determination of environmental pollutions. They are used not only for analysis of typical chemicals present in different environmental compartments (in air, water and soil samples) but also for analysis of explosives, drugs and chemical warfare agents when fast results are needed. Particularly noteworthy is their applications in space exploration on the International Space Station. The selected examples of applications of miniaturised GC-MS and GC-IMS devices are presented in the second part of this mini review.


[1] Gałuszka A, Migaszewski ZM, Namieśnik J. Moving your laboratory to the field - advantages and limitations of the use of field-portable instruments in environmental sample analysis. Environ Res. 2015;140:593-603. DOI: 10.1016/j.envres.2015.05.017. Search in Google Scholar

[2] Witkiewicz Z, Wardencki W. Transportable, portable and micro gas chromatographs. Anal Chem: Indian J. 2019;19:1-12. DOI:10.37532/0974-7419.2019.19(1).142. Search in Google Scholar

[3] Qu H, Duan X. Recent advances in micro detectors for micro gas chromatography. Sci China Mater. 2019;62(5):611-23. DOI: 10.1007/s40843-018-9389-0. Search in Google Scholar

[4] Makas AL, Troshkov ML. Field gas chromatography-mass spectrometry for fast analysis. J Chrom B. 2004;800:55-61. DOI: 10.1016/j.jasms.2008.06.0. Search in Google Scholar

[5] Li L, Chen T, Ren Y, Hendricks PI, Cooks RG, Quyang Z. Mini 12, miniature mass spectrometer for clinical and other applications - Introduction and characterization. Anal Chem. 2014;86:2909-16. DOI: 10.1021/ac403766c. Search in Google Scholar

[6] Snyder D, Pulliam C, Quyang Z, Cooks R. Miniature and fieldable mass spectrometers. Anal Chem. 2016;88(1):2-29. DOI: 10.1021/acs.analchem.5b03070. Search in Google Scholar

[7] Sanders NL, Kothari S, Huang G, Salazar G, Cooks RG, Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer. Anal Chem. 2010; 82(12):5313-6. DOI: 10.1021/ac1008157. Search in Google Scholar

[8] McBride EM, Mach PM, Dhummakupt ES, Dowling S, Carmay DO, Demond PS, et al. Paper spray ionization: Applications and perspectives. Trends Anal Chem. 2019;118:722-30. DOI: 10.1016/j.trac.2019.06.028. Search in Google Scholar

[9] Xiao Y, Deng J, Yao Y, Fang L, Yang Y, Luan T. Recent advances of ambient mass spectrometry imaging for biological tissues: A review. Anal Chim Acta. 2020;1117:74-88. DOI: 10.1016/j.aca.2020.01.052. Search in Google Scholar

[10] Lammert SA, Rockwood AA, Wang M, Lee M, Lee ED, Tolley SE, et al. Miniature toroidal frequency ion trap mass analyzer. J. Am Soc Mass Spectrom. 2006;17:916-22. DOI: 10.1016/j.jasms.2006.02.009. Search in Google Scholar

[11] Contreras JA, Murray JA, Tolley SE, Oliphant JL, Tolley HD, Lammert SA, et al. Hand-portable gas chromatograph-toroidal ion trap mass spectrometer for detection of hazardous compounds. J Am Soc Mass Spectrom. 2008;19:1425-34. DOI: 10.1016/j.jasms.2008.06.022. Search in Google Scholar

[12] Guo Q, Gao L, Zhai Y, Xu W. Recent developments of miniature ion trap mass spectrometers. Chin Chem. Letters. 2018;29:1578-84. DOI: 10.1016/j.cclet.2017.12.009. Search in Google Scholar

[13] Quyang Z, Cooks RG. Miniature mass spectrometer. Ann Rev Anal Chem. 2009;2:187-214. DOI: 10.1146/annurev-anchem-060908-155229. Search in Google Scholar

[14] Meng X, Zhang X, Zhai Y, Xu W. Mini 2000: a robust miniature mass spectrometer with continuous atmospheric pressure interface. Instruments. 2018;2. DOI: 2,210.3390/instruments2010002. Search in Google Scholar

[15] Hamilton SE, Mattrey F, Bu X, Murray D, McCullough B, Welch CJ. Use of miniature mass spectrometer to support pharmaceutical process chemistry. Org Process Res Develop. 2014;18:103-8. DOI: 1021/op400253x. Search in Google Scholar

[16] Mielczarek P, Silbering J, Smoluch M. Miniaturization in mass spectrometry. Mass Spectrom Rev. 2020;39(5-6):453-70. DOI: 10.1002/mas.21614. Search in Google Scholar

[17] Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia J. Review on ion mobility spectrometry. Part 1: Current instrumentation. Analyst. 2015;140:1376-90. DOI: 10.1039/c4an01100g. Search in Google Scholar

[18] Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia J. Review on ion mobility spectrometry. Part 2: Hyphenated methods and effects of experimental parameters. Analyst. 2015;140:1391-410. DOI: 10.1039/c4an01100g. Analyst. 2015; 140:1391-1410. DOI: 10.1039/c4an01101e. Search in Google Scholar

[19] Eiceman GA, Karpas Z, Hill HH Jr. Ion Mobility Spectrometry. 3rd ed. Boca Raton: Taylor Francis; 2013. ISBN: 9781439859971. Search in Google Scholar

[20] Puton J, Namieśnik J. Ion mobility spectrometry. Trends Anal Chem. 2016;85:10-20. DOI: 10.1016/j.trac.2016.06.002. Search in Google Scholar

[21] Satoh T, Kishi TS, Nagashima H, Tachikawa M, Kanamori-Kataoka M, Nakagawa T, et al. Ion mobility spectrometric analysis of vapours chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation. Anal Chim Acta. 2015;865:39-52. DOI: 10.1016/j.aca.2015.02.004. Search in Google Scholar

[22] Kanu AB, Hill HH Jr. Ion mobility for gas chromatography. J Chromatogr A. 2008;1177;12-27. DOI: 10.1016/j.chroma.2007.10.110. Search in Google Scholar

[23] Ahrens A, Hitzemann, Zimmermann S. Miniaturized high-performance drift-tube ion mobility spectrometer. J Ion Mobil Spectrom. 2019;22:77-83. DOI: 10.1007/s12127-019-00248-w. Search in Google Scholar

[24] Schneider BB, Nazarov EG, Londry F, Vouros FP, Covey TR. Differential mobility spectrometry/mass spectrometry, history, theory, design optimization, simulations, and applications. Mass Spectrom Rev. 2015;34:687-737. DOI: 10.1002/mas.21453. Search in Google Scholar

[25] Cohen MJ, Karasek FW. Plasma chromatography – a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci. 1970;8(6):330-7. DOI: 10.1093/chromsci/8.6.330. Search in Google Scholar

[26] Aguilera-Herradora E, Cardenasa S, Ruzsanyi V, Sielemann S, Varcalcel M. Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast chromatography multi-capillary columns. J Chromatogr A. 2008;1214:143-50. DOI: 10.1016/j.chroma.2008.10.050. Search in Google Scholar

[27] Palmer PT, Limero TF. J Am Soc Mass Spectrom. 2001;12:656-76. DOI: 10.1016/S1044-0305(01)00249-5. Search in Google Scholar

[28] Grabka M, Żukowski P, Witkiewicz Z. Zastosowanie chromatografii gazowej w pozaziemskich misjach badawczych (Application of gas chromatography in extraterrestrial research missions). Aparat Bad Dydakt. 2012;17:69-77. Search in Google Scholar

[29] Hofer L, Wurz P, Buch A, Cabane M, Cool P, Coscia D, et al. Planet Space Sci. 2015;111:126-33. DOI: 10.1016/j.pss.2015.03.027. Search in Google Scholar

[30] Gorder KA, Dettenmaier ME. Groundwat Monit Remed. 2011;31:113-9. DOI: 10.1111/j.1745-6592.2011.01357.x. Search in Google Scholar

[31] Eckenrode BA. Environmental and forensic application of field-portable GC-MS: An overview. J Am Soc Mass Spectrom. 2001;12(6):683-93. DOI: 10.1016/S1044-0305(01)00251-3. Search in Google Scholar

[32] Ochiai N, Sasamoto K. Screening of pesticide residues in water by sequential stir bar sorptive extraction-thermal desorption with GC/MSD. Appl Note Agilent Technol. 2010. Search in Google Scholar

[33] Leary PE, Kammrath BW, Lattman KJ, Beals GL. Deploying portable gas chromatography-mass spectrometry to military users for the identification of toxic chemical agents in theatre. Appl Spectrosc. 2019;73:841-58. DOI: 10.1177/0003702819849499. Search in Google Scholar

[34] Sekiguchi H, Matsushita K, Yamashiro S, Sano Y, Seto Y, Okuda T, et al. On-site determination of nerve and mustard gases using a field-portable gas chromatograph-mass spectrometer. Forensic Toxic. 2006;24:17-22. DOI: 10.1007/s11419-006-0004-4. Search in Google Scholar

[35] Bednar AJ, Russell AL, Hayes CA, Jones WT, Tackett Splichal DE, Georgian T, et al. Chemosphere. 2012;87:894-901. DOI: 10.1016/j.chemosphere.2012.01.042. Search in Google Scholar

[36] Beck J, Porter N, Cook D, Gee WS, Griffith CM, Rands AD, et al. In-field volatile analysis employing a hand-held portable gc-ms: emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem Anal. 2015;26:395-403. DOI: 10.1002/pca.2573. Search in Google Scholar

[37] Limero T, Cheng P, Reese E, Trowbridge J. Results of the air quality monitor’s experiment to measure volatile organic compounds aboard the International Space Station. 40th Int Conf Environmental Systems, Barcelona, September 2010. URI: hdl.handle.net/2346/72986. Search in Google Scholar

[38] Limero T, Wallace W, James JT. Operational validation of the air quality monitor on the International Space Station. 44th Int Conf Environmental Systems, Tucson. July 2014. URI: hdl.handle.net/2346/72986. Search in Google Scholar

[39] Limero T, Nazarov EG, Menlyadiev M, Eiceman GA. Analyst. 2015;140:922-30. DOI: 10.1039/C4AN01800A. Search in Google Scholar

[40] Caygill JS, Davis F, Higson SP. Current trends in explosive detection techniques. Talanta. 2012;88:80-8. DOI: 10.1016/j.talanta.2011.11.043. Search in Google Scholar

[41] Cook GW, LaPuma PT, Hook GL, Eckenrode BA. J Forensic Sci. 2010;55:1582-91. DOI: 10.1111/j.1556-4029.2010.01522.x. Search in Google Scholar

[42] Kwan C, Snyder AP, Erickson RP, Maswadeh PA, Ayhan B, Jensen JL, et al. IEEE Sensors J. 2010;10:451-60. Search in Google Scholar

[43] Erickson RP, Tripathi A, Maswadeh WM, Snyder AP, Smith PA. Closed tube introduction for gas chromatography-ion mobility spectrometry analysis of water contaminated with a chemical warfare agent surrogate compound. Anal Chim Acta. 2006;556:455-61. DOI: 10.1016/j.aca.2005.09.031. Search in Google Scholar

[44] Cavanna D, Zanardi S, Dall’Asta C, Suman M. Food Chem. 2019;15:691-6. DOI: 10.1016/j.foodchem.2018.07.204. Search in Google Scholar

[45] Reyes-Garces N, Gomez-Rios GA, Souza Silwa EA, Pawliszyn J. Coupling needle-trap devices with gas chromatography-ion mobility spectrometry detection as a simple approach for on-site quantitative analysis. J Chromatogr A. 2013;1300:193-8. DOI: 10.1016/j.chroma.2013.05.042. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo