1. bookVolume 28 (2021): Issue 1 (March 2021)
    Special Issue: ECO-TECHNOLOGY AND ECO-INNOVATION FOR GREEN SUSTAINABLE GROWTH
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Do We Still Need a Laboratory to Study Advanced Oxidation Processes? A Review of the Modelling of Radical Reactions used for Water Treatment

Published Online: 23 Apr 2021
Page range: 11 - 28
Journal Details
License
Format
Journal
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Environmental pollution due to humankind’s often irresponsible actions has become a serious concern in the last few decades. Numerous contaminants are anthropogenically produced and are being transformed in ecological systems, which creates pollutants with unknown chemical properties and toxicity. Such chemical pathways are usually examined in the laboratory, where hours are often needed to perform proper kinetic experiments and analytical procedures. Due to increased computing power, it becomes easier to use quantum chemistry computation approaches (QCC) for predicting reaction pathways, kinetics, and regioselectivity. This review paper presents QCC for describing the oxidative degradation of contaminants by advanced oxidation processes (AOP, i.e., techniques utilizing •OH for degradation of pollutants). Regioselectivity was discussed based on the Acid Blue 129 compound. Moreover, the forecasting of the mechanism of hydroxyl radical reaction with organic pollutants and the techniques of prediction of degradation kinetics was discussed. The reactions of •OH in various aqueous systems (explicit and implicit solvation) with water matrix constituents were reviewed. For example, possible singlet oxygen formation routes in the AOP systems were proposed. Furthermore, quantum chemical computation was shown to be an excellent tool for solving the controversies present in the field of environmental chemistry, such as the Fenton reaction debate [main species were determined to be: •OH < pH = 2.2 < oxoiron(IV)]. An ongoing discussion on such processes concerning similar reactions, e.g., associated with sulphate radical-based advanced oxidation processes (SR-AOP), could, in the future, be enriched by similar means. It can be concluded that, with the rapid growth of computational power, QCC can replace most of the experimental investigations related to the pollutant’s remediation in the future; at the same time, experiments could be pushed aside for quality assessment only.

Keywords

[1] Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the anthropocene (Chemia atmosferyczna i klimat w antropocenie). Chem Didact Ecol Metrol. 2015;19:9-28. DOI: 10.1515/cdem-2014-0001. Search in Google Scholar

[2] Wacławek S, Černík M, Dionysiou DD. The Development and Challenges of Oxidative Abatement for Contaminants of Emerging Concern. A New Paradigm for Environmental Chemistry and Toxicology. Singapore: Springer Singapore; 2020. DOI: 10.1007/978-981-13-9447-8_10. Search in Google Scholar

[3] Wacławek S, Grübel K, Silvestri D, Padil VVT, Wacławek M, Černík M, et al. Disintegration of wastewater activated sludge (WAS) for improved biogas production. Energies. 2019;12:21. DOI: 10.3390/en12010021. Search in Google Scholar

[4] Silvestri D, Wacławek S, Stejskal V, Vlkova D, Kvapil P, Kohout P, et al. A pilot test in Eastern Bohemia for chlorinated aliphatic hydrocarbons groundwater remediation. CEST’19, 2019. Available from: https://cest2019.gnest.org/sites/default/files/presentation_file_list/cest2019_00918_posterf_paper.pdf. Search in Google Scholar

[5] Grübel K, Machnicka A, Nowicka E, Wacławek S. Mesophilic-thermophilic fermentation process of waste activated sludge after hybrid disintegration. Ecol Chem Eng S. 2014;21:125-36. DOI: 10.2478/eces-2014-0011. Search in Google Scholar

[6] Wacławek S, Grübel K, Chłąd Z, Dudziak M, Černík M. The impact of oxone on disintegration and dewaterability of waste activated sludge. Water Environ Res. 2016;88:152-7. DOI: 10.2175/106143016x14504669767139. Search in Google Scholar

[7] Wacławek S, Grübel K, Černík M. The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge. Environ Technol (United Kingdom). 2016;37:1296-304. DOI: 10.1080/09593330.2015.1112434. Search in Google Scholar

[8] Wacławek S, Grübel K, Chład Z, Dudziak M. Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge. Chem Pap. 2015;69:1473-80. DOI: 10.1515/chempap-2015-0169. Search in Google Scholar

[9] Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J. 2017;330:44-62. DOI: 10.1016/j.cej.2017.07.132. Search in Google Scholar

[10] Wacławek S, Padil VVT, Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol Chem Eng S. 2018;25:9-34. DOI: 10.1515/ECES-2018-0001. Search in Google Scholar

[11] Tsitonaki A, Petri B, Crimi M, Mosbk H, Siegrist RL, Bjerg PL. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit Rev Environ Sci Technol. 2010;40:55-91. DOI: 10.1080/10643380802039303. Search in Google Scholar

[12] Tentscher PR, Lee M, von Gunten U. Micropollutant oxidation studied by quantum chemical computations: Methodology and applications to thermodynamics, kinetics, and reaction mechanisms. Acc Chem Res. 2019;52:605-14. DOI: 10.1021/acs.accounts.8b00610. Search in Google Scholar

[13] Tachikawa H, Iyama T, Abe S. DFT study on the interaction of fullerene (C-60) with hydroxyl radical (OH). In: Iwamoto M, Kaneto K, Otomo A, Onoda, M, editors. 9th Int Conf Nano-Molecular Electronics. 2011;14. DOI: 10.1016/j.phpro.2011.05.027. Search in Google Scholar

[14] Pabis A, Szala-Bilnik J, Swiatla-Wojcik D. Molecular dynamics study of the hydration of the hydroxyl radical at body temperature. Phys Chem Chem Phys. 2011;13:9458-68. DOI: 10.1039/c0cp02735a. Search in Google Scholar

[15] Shimizu E, Tokuyama Y, Okutsu N, Nomura K, Danilov VI, Kurita N. Attacking mechanism of hydroxyl radical to DNA base-pair: density functional study in vacuum and in water. J Biomol Struct Dyn. 2015;33:158-66. DOI: 10.1080/07391102.2013.864572. Search in Google Scholar

[16] Yamabe S, Tsuchida N, Yamazaki S. DFT Study of the hydroxyl radical addition to 2’-deoxyguanosine and the guanine base in four double-stranded B-form dimers. J Phys Chem B. 2020;124:1374-82. DOI: 10.1021/acs.jpcb.9b10330. Search in Google Scholar

[17] Liu P, Wang Q, Niu M, Wang D. Multi-level quantum mechanics and molecular mechanics study of ring opening process of guanine damage by hydroxyl radical in aqueous solution. Sci Rep. 2017;7. DOI: 10.1038/s41598-017-08219-z. Search in Google Scholar

[18] Lespade L. Ab initio molecular dynamics of free radical-induced oxidation of ergothioneine. J Mol Model. 2019;25. DOI: 10.1007/s00894-019-4220-3. Search in Google Scholar

[19] Koppenol WH. Oxygen activation by cytochrome P450: A thermodynamic analysis. J Am Chem Soc. 2007;129:9686-90. DOI: 10.1021/ja071546p. Search in Google Scholar

[20] Espinosa-Garcia J, Gutierrez-Merino C. The trapping of the OH radical by coenzyme Q. A theoretical and experimental study. J Phys Chem A. 2003;107:9712-23. DOI: 10.1021/jp035927a. Search in Google Scholar

[21] Hatipoglu A, Vione D, Yalcin Y, Minero C, Cinar Z. Photo-oxidative degradation of toluene in aqueous media by hydroxyl radicals. J Photochem Photobiol A: Chemistry. 2010;215:59-68. DOI: 10.1016/j.jphotochem.2010.07.021. Search in Google Scholar

[22] Asghar A, Abdul Raman AA, Wan Daud WMA, Ramalingam A. Reactivity, stability, and thermodynamic feasibility of H2O2/H2O at graphite cathode: Application of quantum chemical calculations in MFCs. Environ Prog Sustain Energy. 2018;37:1291-304. DOI: 10.1002/ep.12806. Search in Google Scholar

[23] Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17. DOI: 10.1186/1758-2946-4-17. Search in Google Scholar

[24] Neese F. The ORCA program system. WIREs Comput Mol Sci. 2012;2:73-8. DOI: 10.1002/wcms.81. Search in Google Scholar

[25] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M, Cheeseman JR, et al. Gaussian 16_C01 2016. Available from: https://gaussian.com/. Search in Google Scholar

[26] Lu T, Chen F. Atomic dipole moment corrected Hirshfeld population method. J Theor Comput Chem. 2012;11:163-83. DOI: 10.1142/S0219633612500113. Search in Google Scholar

[27] Luo S, Gao L, Wei Z, Spinney R, Dionysiou DD, Hu WP, et al. Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates. Water Res. 2018;137:233-41. DOI: 10.1016/j.watres.2018.03.002. Search in Google Scholar

[28] Krawczyk K, Wacławek S, Kudlek E, Silvestri D, Kukulski T, Grübel K, et al. UV-catalyzed persulfate oxidation of an anthraquinone based dye. Catalysts. 2020;10:456. DOI: 10.3390/catal10040456. Search in Google Scholar

[29] Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580-92. DOI: 10.1002/jcc.22885. Search in Google Scholar

[30] Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14:33-8. DOI: 10.1016/0263-7855(96)00018-5. Search in Google Scholar

[31] VMD a molecular visualization program, Webpage. Available from: http://www.ks.uiuc.edu/Research/vmd/. Search in Google Scholar

[32] Toro-Labbé A, Jaque P, Murray JS, Politzer P. Connection between the average local ionization energy and the Fukui function. Chem Phys Lett. 2005;407:143-6. DOI: 10.1016/j.cplett.2005.03.041. Search in Google Scholar

[33] Johnson N, Russell I. Advances in Wool Technology. Woodhead Publishing Ltd.; 2008. ISBN: 9781845693329. Available from: http://hdl.handle.net/2086/9354. Search in Google Scholar

[34] Cinar Z. The role of molecular modeling in TiO2 photocatalysis. Molecules. 2017;22:556. DOI: 10.3390/molecules22040556. Search in Google Scholar

[35] Zhang S, Yu G, Chen J, Zhao Q, Zhang X, Wang B, et al. Elucidating ozonation mechanisms of organic micropollutants based on DFT calculations: Taking sulfamethoxazole as a case. Environ Pollut. 2017;220:971-80. DOI: 10.1016/J.ENVPOL.2016.10.076. Search in Google Scholar

[36] Psutka JM, Dion-Fortier A, Dieckmann T, Campbell JL, Segura PA, Hopkins WS. Identifying Fenton-reacted trimethoprim transformation products using differential mobility spectrometry. Anal Chem. 2018;90:5352-7. DOI: 10.1021/acs.analchem.8b00484. Search in Google Scholar

[37] Lecours MA, Eysseric E, Yargeau V, Lessard J, Brisard G, Segura P, et al. Electrochemistry-high resolution mass spectrometry to study oxidation products of trimethoprim. Environments. 2018;5:18. DOI: 10.3390/environments5010018. Search in Google Scholar

[38] Dittmer A, Izsák R, Neese F, Maganas D. Accurate band gap predictions of semiconductors in the framework of the similarity transformed equation of motion coupled cluster theory. Inorg Chem. 2019;58:9303-15. DOI: 10.1021/acs.inorgchem.9b00994. Search in Google Scholar

[39] Kamath D, Mezyk SP, Minakata D. Elucidating the elementary reaction pathways and kinetics of hydroxyl radical-induced acetone degradation in aqueous phase advanced oxidation processes. Environ Sci Technol. 2018;52:7763-74. DOI: 10.1021/acs.est.8b00582. Search in Google Scholar

[40] Maeda S, Harabuchi Y, Ono Y, Taketsugu T, Morokuma K. Intrinsic reaction coordinate: Calculation, bifurcation, and automated search. Int J Quantum Chem. 2015;115:258-69. DOI: 10.1002/qua.24757. Search in Google Scholar

[41] Serobatse KRN, Kabanda MM. An appraisal of the hydrogen atom transfer mechanism for the reaction between thiourea derivatives and center dot OH radical: A case-study of dimethylthiourea and diethylthiourea. Comput Theor Chem. 2017;1101:83-95. DOI: 10.1016/j.comptc.2016.12.027. Search in Google Scholar

[42] Moc J, Simmie JM. Hydrogen abstraction from n-butanol by the hydroxyl radical: high level ab initio study of the relative significance of various abstraction channels and the role of weakly bound intermediates. J Phys Chem A. 2010;114:5558-64. DOI: 10.1021/jp1009065. Search in Google Scholar

[43] Cinar SA, Ziylan-Yavas A, Catak S, Ince NH, Aviyente V. Hydroxyl radical-mediated degradation of diclofenac revisited: a computational approach to assessment of reaction mechanisms and by-products. Environ Sci Pollut Res. 2017;24:18458-69. DOI: 10.1007/s11356-017-9482-7. Search in Google Scholar

[44] Canneaux S, Bohr F, Henon E. KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem. 2014;35:82-93. DOI: 10.1002/jcc.23470. Search in Google Scholar

[45] Aydogdu S, Hatipoglu A. Theoretical investigation on the kinetics of dimethyl phosphoramidate with hydroxyl radicals. J Indian Chem Soc. 2019;96:1117-22. Search in Google Scholar

[46] Xiao R, Gao L, Wei Z, Spinney R, Luo S, Wang D, et al. Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach. Environ Pollut. 2017;231:1446-52. DOI: 10.1016/j.envpol.2017.09.006. Search in Google Scholar

[47] Li X, Wang B, Wang Y, Li K, Yu G. Synergy effect of E-peroxone process in the degradation of structurally diverse pharmaceuticals: A QSAR analysis. Chem Eng J. 2019;360:1111-8. DOI: 10.1016/J.CEJ.2018.10.191. Search in Google Scholar

[48] Sudhakaran S, Calvin J, Amy GL. QSAR models for the removal of organic micropollutants in four different river water matrices. Chemosphere. 2012;87:144-50. DOI: 10.1016/J.CHEMOSPHERE.2011.12.006. Search in Google Scholar

[49] Lee Y, von Gunten U. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res. 2012;46:6177-95. DOI: 10.1016/J.WATRES.2012.06.006. Search in Google Scholar

[50] Luo S, Wei Z, Dionysiou DD, Spinney R, Hu WP, Chai L, et al. Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway. Chem Eng J. 2017;327:1056-65. DOI: 10.1016/j.cej.2017.06.179. Search in Google Scholar

[51] Liu Y, Cheng Z, Liu S, Tan Y, Yuan T, Yu X, et al. Quantitative structure activity relationship (QSAR) modelling of the degradability rate constant of volatile organic compounds (VOCs) by OH radicals in atmosphere. Sci Total Environ. 2020;729:138871. DOI: 10.1016/j.scitotenv.2020.138871. Search in Google Scholar

[52] Sudhakaran S, Amy GL. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification. Water Res. 2013;47:1111-22. DOI: 10.1016/j.watres.2012.11.033. Search in Google Scholar

[53] Luo X, Wei X, Chen J, Xie Q, Yang X, Peijnenburg WJGM. Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies. Water Res. 2019;166. DOI: 10.1016/j.watres.2019.115083. Search in Google Scholar

[54] Jia L, Shen Z, Guo W, Zhang Y, Zhu H, Ji W, et al. QSAR models for oxidative degradation of organic pollutants in the Fenton process. J Taiwan Inst Chem Eng. 2015;46:140-7. DOI: 10.1016/J.JTICE.2014.09.014. Search in Google Scholar

[55] Su H, Yu C, Zhou Y, Gong L, Li Q, Alvarez PJJ, et al. Quantitative structure-activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2. Water Res. 2018;140:354-63. DOI: 10.1016/J.WATRES.2018.04.062. Search in Google Scholar

[56] Cheng Z, Yang B, Chen Q, Tan Y, Gao X, Yuan T, et al. 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation. Chemosphere. 2018;212:828-36. DOI: 10.1016/J.CHEMOSPHERE.2018.08.097. Search in Google Scholar

[57] Gupta S, Basant N. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach. Environ Sci Pollut Res. 2017;24:24936-46. DOI: 10.1007/s11356-017-0161-5. Search in Google Scholar

[58] Heeb MB, Criquet J, Zimmermann-Steffens SG, von Gunten U. Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds - A critical review. Water Res. 2014;48:15-42. DOI: 10.1016/J.WATRES.2013.08.030. Search in Google Scholar

[59] Lee H, Park SH, Kim BH, Kim SJ, Kim SC, Seo SG, et al. Contribution of dissolved oxygen to methylene blue decomposition by hybrid advanced oxidation processes system. Int J Photoenergy. 2012;2012:1-6. DOI: 10.1155/2012/305989. Search in Google Scholar

[60] Zhang R, Wang X, Zhou L, Liu Z, Crump D. The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study. Water Res. 2018;135:144-54. DOI: 10.1016/J.WATRES.2018.02.028. Search in Google Scholar

[61] Xie Y, Schaefer HF. Hydrogen bonding between the water molecule and the hydroxyl radical (H2O · HO): The global minimum. J Chem Phys. 1993;98:8829-34. DOI: 10.1063/1.464492. Search in Google Scholar

[62] Kim KS, Kim HS, Jang JH, Kim HS, Mhin BJ, Xie Y, et al. Hydrogen bonding between the water molecule and the hydroxyl radical (H2O·OH): The 2A″ and 2A′ minima. J Chem Phys. 1991;94:2057-62. DOI: 10.1063/1.459927. Search in Google Scholar

[63] Dubey MK, Mohrschladt R, Donahue NM, Anderson JG. Isotope specific kinetics of hydroxyl radical (OH) with water (H2O): Testing models of reactivity and atmospheric fractionation. J Phys Chem A. 1997;101:1494-500. DOI: 10.1021/jp962332p. Search in Google Scholar

[64] Vassilev P, Louwerse MJ, Baerends EJ. Hydroxyl radical and hydroxide ion in liquid water: A comparative electron density functional theory study. J Phys Chem B. 2005;109:23605-10. DOI: 10.1021/jp044751p. Search in Google Scholar

[65] Allodi MA, Dunn ME, Livada J, Kirschner KN, Shields GC. Do hydroxyl radical-water clusters, OH(H2O)(n), n=1-5, exist in the atmosphere? J Phys Chem A. 2006;110:13283-9. DOI: 10.1021/jp064468l. Search in Google Scholar

[66] Belair SD, Francisco JS, Singer SJ. Hydrogen bonding in cubic (H2O)(8) and OH center dot((HO)-O-2)(7) clusters. Phys Rev A. 2005;71. DOI: 10.1103/PhysRevA.71.013204. Search in Google Scholar

[67] Voglozin D, Cooper P. Altitude profile of the OH radical complex with water in Earth’s atmosphere: a quantum mechanical approach. J Atmos Chem. 2017;74:475-89. DOI: 10.1007/s10874-016-9353-5. Search in Google Scholar

[68] Park JH. Ab initio study on the complex forming reaction of OH and H2O in the gas phase. Asian J Atmos Environ. 2015;9:158-64. DOI: 10.5572/ajae.2015.9.2.158. Search in Google Scholar

[69] Schofield DP, Kjaergaard HG. High-level ab initio studies of the electronic excited states of the hydroxyl radical and water-hydroxyl complex. J Chem Phys. 2004;120:6930-4. DOI: 10.1063/1.1687335. Search in Google Scholar

[70] Soloveichik P, O’Donnell BA, Lester MI, Francisco JS, McCoy AB. Infrared spectrum and stability of the H2O-HO complex: Experiment and theory. J Phys Chem A. 2010;114:1529-38. DOI: 10.1021/jp907885d. Search in Google Scholar

[71] Crespo-Otero R, Sanchez-Garcia E, Suardiaz R, Montero LA, Sander W. Interactions between simple radicals and water. Chem Phys. 2008;353:193-201. DOI: 10.1016/j.chemphys.2008.08.012. Search in Google Scholar

[72] Zhou Z, Qu Y, Fu A, Du B, He F, Gao H. Density functional complete study of hydrogen bonding between the water molecule and the hydroxyl radical (H2O · HO). Int J Quantum Chem. 2002;89:550-8. DOI: 10.1002/qua.10315. Search in Google Scholar

[73] Gonzalez J, Anglada JM. Gas phase reaction of nitric acid with hydroxyl radical without and with water. A theoretical investigation. J Phys Chem A. 2010;114:9151-62. DOI: 10.1021/jp102935d. Search in Google Scholar

[74] Buszek RJ, Torrent-Sucarrat M, Anglada JM, Francisco JS. Effects of a single water molecule on the OH + H2O2 reaction. J Phys Chem A. 2012;116:5821-9. DOI: 10.1021/jp2077825. Search in Google Scholar

[75] Domin D, Braida B, Berges J. Influence of water on the oxidation of dimethyl sulfide by the (OH)-O-center dot radical. J Phys Chem B. 2017;121:9321-30. DOI: 10.1021/acs.jpcb.7b05796. Search in Google Scholar

[76] Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113:6378-96. DOI: 10.1021/jp810292n. Search in Google Scholar

[77] Manonmani G, Sandhiya L, Senthilkumar K. Mechanism and kinetics of diuron oxidation initiated by hydroxyl radical: hydrogen and chlorine atom abstraction reactions. J Phys Chem A. 2019;123:8954-67. DOI: 10.1021/acs.jpca.9b04800. Search in Google Scholar

[78] Minakata D, Crittenden J. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation. Environ Sci Technol. 2011;45:3479-86. DOI: 10.1021/es1020313. Search in Google Scholar

[79] Codorniu-Hernandez E, Kusalik PG. Insights into the solvation and mobility of the hydroxyl radical in aqueous solution. J Chem Theory Comput. 2011;7:3725-32. DOI: 10.1021/ct200418e. Search in Google Scholar

[80] Karakus N, Ozkan R. Ab initio study of atmospheric reactions of the hydroxyl radical-water complex (OH-H2O) with saturated hydrocarbons (methane, ethane and propane). J Mol Struct. 2005;724:39-44. DOI: 10.1016/j.theochem.2004.10.075. Search in Google Scholar

[81] Mansergas A, Gonzalez J, Ruiz-Lopez M, Anglada JM. The gas phase reaction of carbonyl oxide with hydroxyl radical in presence of water vapor. A theoretical study on the reaction mechanism. Comput Theor Chem. 2011;965:313-20. DOI: 10.1016/j.comptc.2011.02.023. Search in Google Scholar

[82] Gonzalez J, Anglada JM, Buszek RJ, Francisco JS. Impact of water on the OH plus HOCl reaction. J Am Chem Soc. 2011;133:3345-53. DOI: 10.1021/ja100976b. Search in Google Scholar

[83] Liu P, Li C, Wang S, Wang D. Catalytic effect of aqueous solution in water-assisted proton-transfer mechanism of 8-hydroxy guanine radical. J Phys Chem B. 2018;122:3124-32. DOI: 10.1021/acs.jpcb.7b09965. Search in Google Scholar

[84] Suma K, Sumiyoshi Y, Endo Y. The rotational spectrum and structure of the HOOO radical. Science. 2005;308:1885-6. DOI: 10.1126/science.1112233. Search in Google Scholar

[85] Gmurek M, Olak-Kucharczyk M, Ledakowicz S. Photochemical decomposition of endocrine disrupting compounds - A review. Chem Eng J. 2017;310:437-56. DOI: 10.1016/j.cej.2016.05.014. Search in Google Scholar

[86] Duan X, Sun H, Wang S. Metal-free carbocatalysis in advanced oxidation reactions. Acc Chem Res. 2018;51:678-87. DOI: 10.1021/acs.accounts.7b00535. Search in Google Scholar

[87] Fan J, Qin H, Jiang S. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen. Chem Eng J. 2019;359:723-32. DOI: 10.1016/j.cej.2018.11.165. Search in Google Scholar

[88] Lee J, von Gunten U, Kim JH. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ Sci Technol. 2020;54:3064-81. DOI: 10.1021/acs.est.9b07082. Search in Google Scholar

[89] Codorniu-Hernandez E, Hall KW, Boese AD, Ziemianowicz D, Carpendale S, Kusalik PG. Mechanism of O(P-3) formation from a hydroxyl radical pair in aqueous solution. J Chem Theory Comput. 2015;11:4740-8. DOI: 10.1021/acs.jctc.5b00783. Search in Google Scholar

[90] Howell CD, Michelangeli DV, Allen M, Yuk LY, Thomas RJ. SME observations of O2 (1Δg) nightglow: An assessment of the chemical production mechanisms. Planet Space Sci. 1990;38:529-37. DOI: 10.1016/0032-0633(90)90145-G. Search in Google Scholar

[91] Vlasov MN, Klopovsky KS, Lopaev DV, Popov NA, Rakhimov AT, Rakhimova TV. The mechanism of singlet oxygen emission in the upper atmosphere. Cosm Res. 1997;35:219-25. Search in Google Scholar

[92] Tarasick DW, Evans WFJ. A review of the O2 (a1Δg) and O2 (b1Σg+) airglow emissions. Adv Sp Res. 1993;13:145-8. DOI: 10.1016/0273-1177(93)90014-3. Search in Google Scholar

[93] Zakharov II, Loriya MG, Tselishchev AB. Structure of the HOO-N=N-OOH intermediate in hydrogen peroxide activation of N2: Quantum chemical DFT calculations. J Struct Chem. 2013;54:10-6. DOI: 10.1134/S0022476613010022. Search in Google Scholar

[94] Wang B, Hou H, Gu Y. Existence of hydrogen bonding between the hydroxyl radical and hydrogen peroxide: OH·H2O2. Chem Phys Lett. 1999;309:274-8. DOI: 10.1016/S0009-2614(99)00686-7. Search in Google Scholar

[95] Yamaguchi M. Hemibonding of hydroxyl radical and halide anion in aqueous solution. J Phys Chem A. 2011;115:14620-8. DOI: 10.1021/jp2063386. Search in Google Scholar

[96] Sevilla MD, Summerfield S, Eliezer I, Rak J, Symons MCR. Interaction of the chlorine atom with water: ESR and ab initio MO evidence for three-electron (sigma(2)sigma{*}(1)) bonding. J Phys Chem A. 1997;101:2910-5. DOI: 10.1021/jp964097g. Search in Google Scholar

[97] Shah S, Hao C. Quantum chemical investigation on photodegradation mechanisms of sulfamethoxypyridazine with dissolved inorganic matter and hydroxyl radical. J Environ Sci. 2017;57:85-92. DOI: 10.1016/j.jes.2016.09.023. Search in Google Scholar

[98] O’Donnell BA, Li EXJ, Lester MI, Francisco JS. Spectroscopic identification and stability of the intermediate in the OH+HONO2 reaction. Proc Natl Acad Sci USA. 2008;105:12678-83. DOI: 10.1073/pnas.0800320105. Search in Google Scholar

[99] Martins-Costa MTC, Ruiz-Lopez MF. Molecular dynamics of hydrogen peroxide in liquid water using a combined quantum/classical force field. Chem Phys. 2007;332:341-7. DOI: 10.1016/j.chemphys.2006.12.018. Search in Google Scholar

[100] Jin X, Peldszus S, Huck PM. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes. Water Res. 2012;46:6519-30. DOI: 10.1016/J.WATRES.2012.09.026. Search in Google Scholar

[101] Barbusinski K. Fenton reaction - Controversy concerning the chemistry. Ecol Chem Eng S. 2009;16:347-58. Available from: https://drive.google.com/file/d/16kMQeMGRupbWPc4yhlKh48Uy2wH3g2vG/view. Search in Google Scholar

[102] Kuznetsov ML, Teixeira FA, Bokach NA, Pombeiro AJL, Shul’pin GB. Radical decomposition of hydrogen peroxide catalyzed by aqua complexes {[}M(H2O)(n)](2+) (M = Be, Zn, Cd). J Catal. 2014;313:135-48. DOI: 10.1016/j.jcat.2014.03.010. Search in Google Scholar

[103] Novikov AS, Kuznetsov ML, Pombeiro AJL, Bokach NA, Shul’pin GB. Generation of HO center dot radical from hydrogen peroxide catalyzed by aqua complexes of the group III metals {[}M(H2O)(n)](3+) (M = Ga, In, Sc, Y, or La): A theoretical study. ACS Catal. 2013;3:1195-208. DOI: 10.1021/cs400155q. Search in Google Scholar

[104] Chen HY. Why the reactive oxygen species of the fenton reaction switches from oxoiron(IV) species to hydroxyl radical in phosphate buffer solutions? A Computational Rationale. ACS Omega. 2019;4:14105-13. DOI: 10.1021/acsomega.9b02023. Search in Google Scholar

[105] Duan X, Yang S, Wacławek S, Fang G, Xiao R, Dionysiou DD. Limitations and prospects of sulfate-radical based advanced oxidation processes. J Environ Chem Eng. 2020;8:103849. DOI: 10.1016/j.jece.2020.103849. Search in Google Scholar

[106] Buda F, Ensing B, Gribnau MCM, Baerends EJ. DFT study of the active intermediate in the Fenton reaction. Chem Eur J. 2001;7:2775-83. DOI: 10.1002/1521-3765(20010702)7:13<2775::AID-CHEM2775>3.0.CO; 2-6. Search in Google Scholar

[107] Ensing B, Buda F, Blöchl PE, Baerends EJ. A Car-Parrinello study of the formation of oxidizing intermediates from Fenton’s reagent in aqueous solution. Phys Chem Chem Phys. 2002;4:3619-27. DOI: 10.1039/b201864k. Search in Google Scholar

[108] Ensing B, Baerends EJ. Reaction path sampling of the reaction between iron(II) and hydrogen peroxide in aqueous solution. J Phys Chem A. 2002;106:7902-10. DOI: 10.1021/jp025833l. Search in Google Scholar

[109] Ensing B, Buda F, Blöchl P, Baerends EJ. Chemical involvement of solvent water molecules in elementary steps of the Fenton oxidation reaction. Angew Chemie. 2001;113:2977-9. DOI: 10.1002/1521-3757(20010803)113:15<2977::aid-ange2977>3.0.co;2-q. Search in Google Scholar

[110] Yamamoto N, Koga N, Nagaoka M. Ferryl-oxo species produced from Fenton’s reagent via a two-step pathway: Minimum free-energy path analysis. J Phys Chem B. 2012;116:14178-82. DOI: 10.1021/jp310008z. Search in Google Scholar

[111] Petit AS, Pennifold RCR, Harvey JN. Electronic structure and formation of simple ferryloxo complexes: Mechanism of the Fenton reaction. Inorg Chem. 2014;53:6473-81. DOI: 10.1021/ic500379r. Search in Google Scholar

[112] Lu HF, Chen HF, Kao CL, Chao I, Chen HY. A computational study of the Fenton reaction in different pH ranges. Phys Chem Chem Phys. 2018;20:22890-901. DOI: 10.1039/C8CP04381G. Search in Google Scholar

[113] Lutze HV, Brekenfeld J, Naumov S, von Sonntag C, Schmidt TC. Degradation of perfluorinated compounds by sulfate radicals - New mechanistic aspects and economical considerations. Water Res. 2018;129:509-19. DOI: 10.1016/j.watres.2017.10.067. Search in Google Scholar

[114] The 1998 Nobel Prizes. Econ. 1998:97. Available from: https://www.economist.com/science-and-technology/1998/10/15/picking-winners Search in Google Scholar

[115] Liu F, Sanchez DM, Kulik HJ, Martínez TJ. Exploiting graphical processing units to enable quantum chemistry calculation of large solvated molecules with conductor-like polarizable continuum models. Int J Quantum Chem. 2019;119:e25760. DOI: 10.1002/qua.25760. Search in Google Scholar

[116] Cheng J, Hu D, Yao A, Gao Y, Asadi H. A computational study on the Pd-decorated ZnO nanocluster for H2 gas sensing: A comparison with experimental results. Phys E Low-Dimensional Syst Nanostructures. 2020;124:114237. DOI: 10.1016/j.physe.2020.114237. Search in Google Scholar

[117] Mei Q, Cao H, Han D, Li M, Yao S, Xie J, et al. J Hazard Mater. 2020;389:121901. DOI: 10.1016/j.jhazmat.2019.121901. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo