Open Access

Seasonal Dynamics of Catalase Activity in Cystoseira crinita (Black Sea) and Fucus vesiculosus (Barents Sea)


Cite

[1] Milchakova N. Marine Plants of the Black Sea. An Illustrated Field Guide. Sevastopol: DigitPrint; 2011. ISBN: 9789660258013. Available from: https://core.ac.uk/download/pdf/226085389.pdf.10.21072/978-966-02-5801-3Search in Google Scholar

[2] Makarov MV, Ryzhik IV, Voskoboinikov GM. The effect of Fucus vesiculosus L. (Phaeophyceae) depth of vegetation in the Barents Sea (Russia) on its morphophysiological parameters. Int J Algae. 2013;15.1:77-90. DOI: 10.1615/InterJAlgae.v15.i1.60.10.1615/InterJAlgae.v15.i1.60Search in Google Scholar

[3] Shakhmatova OA, Milchakova NA. Effect of environmental conditions on Black sea macroalgae catalase activity. Int J Algae. 2014;16.4:377-91. DOI: 10.1615/InterJAlgae.v16.i4.70.10.1615/InterJAlgae.v16.i4.70Search in Google Scholar

[4] Willekens H, Inzé D, Van Montagu M, van Camp W. Catalases in plants. Mol Breeding. 1995;1:207-28. DOI: 10.1007/BF02277422.10.1007/BF02277422Search in Google Scholar

[5] Lesser MP. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol. 2006;68:253-78. DOI: 10.1146/annurev.physiol.68.040104.110001.10.1146/annurev.physiol.68.040104.110001Search in Google Scholar

[6] Ryzhik IV. Seasonal changes in the metabolic activity of cells of Fucus vesiculosus Linnaeus, 1753 (Phaeophyta: Fucales) from the Barents Sea. Russ J Marine Biol. 2018;42.5:433-36. DOI: 10.1134/S1063074016050102.10.1134/S1063074016050102Search in Google Scholar

[7] Shakhmatova OA, Kovardakov SA. The catalase activity of the red alga Ceramium virgatum Roth, 1797 as a marker of the quality of the marine environment based on the example of the coastal zone of southwestern Crimea. Russ J Marine Biol. 2019;45.6:436-42. DOI: 10.1134/S1063074019060087.10.1134/S1063074019060087Search in Google Scholar

[8] Milchakova NA. On the status of seagrass communities in the Black Sea. Aquatic Botany. 1999;65,4:21-31. DOI: 10.1016/S0304-3770(99)00028-5.10.1016/S0304-3770(99)00028-5Search in Google Scholar

[9] State report “On the State and Environmental Protection of the Russian Federation in 2017”. Murmansk; 2018. Available from: https://gov-murman.ru/region/environmentstate.Search in Google Scholar

[10] Malavenda SV. Macroalgaes flora of the Kola bay (the Barents sea). Bulletin Murmansk State Techn Univ. 2018;21:245-52. DOI:10.21443/1560-9278-2018-21-2-245-252.10.21443/1560-9278-2018-21-2-245-252Search in Google Scholar

[11] Ryzhik I, Pugovkin D, Makarov M, Basova L, Voskoboynikov G, Roleda MY. Tolerance of Fucus vesiculosus exposed to Diesel water-accommodated fraction (WAF) and degradation of hydrocarbons by the associated bacteria. Environ Pollut. 2019;254:113072. DOI: 10.1016/j.envpol.2019.113072.10.1016/j.envpol.2019.11307231454577Search in Google Scholar

[12] Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress. Marine Biol. 2002;140:1087-95. DOI: 10.1007/s00227-002-0792-y.10.1007/s00227-002-0792-ySearch in Google Scholar

[13] Yakovleva IM, Belotsitsenko ES. The antioxidant potential of dominant macroalgae species from the Sea of Japan. Russ J Marine Biol. 2017;43.5:407-18. DOI: 10.1134/S106307401705011X.10.1134/S106307401705011XSearch in Google Scholar

[14] Baghdadli D, Tremblin G, Pellegrini M, Coudret A. Effects of environmental parameters on net photosynthesis of a free-living brown seaweed, Cystoseira barbata formarepens: determination of optimal photosynthetic culture conditions. J Appl Phycol. 1990;2:281-7. DOI: 10.1007/BF02179786.10.1007/BF02179786Search in Google Scholar

[15] Makarov MV. Adaptation of the light-harvesting complex of the Barents Sea brown seaweed Fucus vesiculosus L. to light conditions. Dokl Biol Sci. 2012;442.1:58-61. DOI: 10.1134/S0012496612010176.10.1134/S0012496612010176Search in Google Scholar

[16] Ryzhik IV, Fisak EM. Annual dynamics of the content of soluble phlorotannins in Fucus vesiculosus L. cells and their possible participation in tissue repair processes. Questions Modern Algology. 2018;1.16:4. Available from: http://algology.ru/1248.Search in Google Scholar

[17] Collén J, Davison I. Reactive oxygen metabolism in intertidal Fucus spp. (Phaeophyceae). J Appl Phycol. 1999;35:62-9. DOI: 10.1046/j.1529-8817.1999.3510054.x.10.1046/j.1529-8817.1999.3510054.xSearch in Google Scholar

[18] Maharana D, Das PB, Verlecar XN, Pise NM, Gauns M. Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components. Environ Sci Pollut Res. 2015;22.23:18741-9. DOI: 10.1007/s11356-015-4985-6.10.1007/s11356-015-4985-6Search in Google Scholar

[19] Carlson L. Seasonal variation in growth, reproduction and nitrogen content of Fucus vesiculosus L. in the Öresund, Southern Sweden. Botanica Marina. 1991;34.5:447-53. DOI:10.1023/A:1004152001370.10.1023/A:1004152001370Search in Google Scholar

[20] Collén J, Davison I. Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Hondrus crispus. Plant Cell Environ. 1999;22:1143-51. DOI: 10.1046/j.1365-3040.1999.00477.x.10.1046/j.1365-3040.1999.00477.xSearch in Google Scholar

[21] Maharana D, Jena K, Pise NM, Jagtap TG. Assessment of oxidative stress indices in a marine macro brown alga Padina tetrastromatica (Hauck) from comparable polluted coastal regions of the Arabian Sea, west coast of India. J Environ Sci. 2010;22.9:1413-7. DOI: 10.1016/S1001-0742(09)60268-0.10.1016/S1001-0742(09)60268-0Search in Google Scholar

eISSN:
1898-6196
Language:
English