Cite

[1] du Jardin P. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic (Amsterdam). 2015;196:3-14. DOI: 10.1016/j.scienta.2015.09.021.10.1016/j.scienta.2015.09.021Search in Google Scholar

[2] Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014;383:3-41. DOI: 10.1007/s11104-014-2131-8.10.1007/s11104-014-2131-8Search in Google Scholar

[3] Alam MZ, Braun G, Norrie J, Hodges DM. Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Can J Plant Sci. 2014;94:337-48. DOI: 10.4141/CJPS2013-135.10.4141/cjps2013-135Search in Google Scholar

[4] Szczepanek M, Ochmian I, Wszelaczyńska E, Pobereżny J, Keutgen AJ, Szczepanek M, et al. Effect of biostimulants and storage on the content of macroelements in storage roots of carrot. J Elem. 2015;20:1021-31. DOI: 10.5601/jelem.2015.20.1.768.10.5601/jelem.2015.20.1.768Search in Google Scholar

[5] Szczepanek M, Wilczewski E, Pobereżny J, Wszelaczyńska E, Ochmian I. Carrot root size distribution in response to biostimulant application. Acta Agric Scand Sect B - Soil Plant Sci. 2017;67:334-9. DOI: 10.1080/09064710.2017.1278783.10.1080/09064710.2017.1278783Search in Google Scholar

[6] Sanders DC, Ricotta JA, Hodges L. Improvement of carrot stands with plant biostimulants and fluid drilling. HortScience. 1990;25:181-3. DOI: 10.21273/HORTSCI.25.2.181.10.21273/HORTSCI.25.2.181Search in Google Scholar

[7] Grabowska A, Kunicki E, Sękara A, Kalisz A, Wojciechowska R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg Crop Res Bull. 2012;77:37-48. DOI: 10.2478/v10032-012-0014-1.10.2478/v10032-012-0014-1Search in Google Scholar

[8] Kwiatkowski CA, Kołodziej B, Woźniak A. Yield and quality parameters of carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. Acta Sci Pol Hortorum Cultus. 2013;12:55-68. Available from: http://www.hortorumcultus.actapol.net/pub/12_5_55.pdfSearch in Google Scholar

[9] Kwiatkowski CA, Haliniarz M, Kołodziej B, Harasim E, Tomczyńska-Mleko M. Content of some chemical components in carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. J Elem. 2015;20:933-43. DOI: 10.5601/jelem.2014.19.4.812.10.5601/jelem.2014.19.4.812Search in Google Scholar

[10] Taha SS, Abdelaziz ME. Effect of different concentrations of seaweed extract on growth, yield and quality of two carrot (Daucus carota L.) cultivars. Curr Sci Int. 2015;4:750-9. Available from: http://www.curresweb.com/csi/csi/2015/750-759.pdf.Search in Google Scholar

[11] Polk C. Biological effects of low-level low-frequency electric and magnetic fields. IEEE Trans Educ. 1991;34:243-9. DOI: 10.1109/13.85082.10.1109/13.85082Search in Google Scholar

[12] Efthimiadou A, Katsenios N, Karkanis A, Papastylianou P, Triantafyllidis V, Travlos I, et al. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. Sci World J. 2014;ID 369745. DOI: 10.1155/2014/369745.10.1155/2014/369745410907325097875Search in Google Scholar

[13] Dorna H, Górski R, Szopińska D, Tylkowska K, Jurga J, Wosiński S, et al. Effects of a permanent magnetic field together with the shielding of an alternating electric field on carrot seed vigour and germination. Ecol Chem Eng S. 2010;17:53-61. Available from: https://drive.google.com/file/d/1IfsFlFVf3-2vO1OlkNuu09220UjUAwWs/view.Search in Google Scholar

[14] da Silva JAT, Dobranszki J. Magnetic fields: how is plant growth and development impacted? Protoplasma 2016;253:231-48. DOI: 10.1007/s00709-015-0820-7.10.1007/s00709-015-0820-725952081Search in Google Scholar

[15] Cieśla A, Kraszewski W, Skowron M, Syrek P. The effects of magnetic fields on seed germination. Prz Elektrotechniczny 2015;91:125-8. DOI: 10.15199/48.2015.01.25.10.15199/48.2015.01.25Search in Google Scholar

[16] Reina FG, Pascual LA, Fundora IA. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: experimental results. Bioelectromagnetics. 2001;22:596-602. DOI: 10.1002/bem.89.10.1002/bem.8911748678Search in Google Scholar

[17] Vashisth A, Nagarajan S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol. 2010;167:149-56. DOI: 10.1016/j.jplph.2009.08.011.10.1016/j.jplph.2009.08.01119783321Search in Google Scholar

[18] Martinez E, Carbonell MV, Amaya JM. A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro- and Magnetobiology. 2000;19:271-7. DOI: 10.1081/JBC-100102118.10.1081/JBC-100102118Search in Google Scholar

[19] Vashisth A, Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics. 2008;29:571-8. DOI: 10.1002/bem.20426.10.1002/bem.2042618512697Search in Google Scholar

[20] Occhipinti A, De Santis A, Maffei ME. Magnetoreception: an unavoidable step for plant evolution? Trends Plant Sci. 2014;19:1-4. DOI: 10.1016/j.tplants.2013.10.007.10.1016/j.tplants.2013.10.00724238701Search in Google Scholar

[21] Binhi VN. Theoretical concepts in magnetobiology. Electro- Magnetobiol. 2001;20:43-58. DOI: 10.1081/JBC-100103159.10.1081/JBC-100103159Search in Google Scholar

[22] Rochalska M, Grabowska-Topczewska K, Mackiewicz A. Influence of alternating low frequency magnetic field on improvement of seed quality. Int Agrophysics. 2011;25:265-9. Available from: http://www.old.international-agrophysics.org/artykuly/international_agrophysics/IntAgr_2011_25_3_265.pdf.Search in Google Scholar

[23] Maffei ME. Plant responses to electromagnetic fields. In: Greenebaum B, Barnes F, editors. Biol. Med. Asp. Electromagn. fields. Fourth ed. Boca Raton: CRC Press, Taylor Francis Group; 2019: 89-109. DOI: 10.1201/9781315221557.10.1201/9781315221557Search in Google Scholar

[24] Lednev VV. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 1991;12:71-5. DOI: 10.1002/bem.2250120202.10.1002/bem.22501202022039557Search in Google Scholar

[25] Balakhnina T, Bulak P, Nosalewicz M, Pietruszewski S, Włodarczyk T. The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiol Plant. 2015;37:59. DOI: 10.1007/s11738-015-1802-2.10.1007/s11738-015-1802-2Search in Google Scholar

[26] Podleśna A, Bojarszczuk J, Podleśny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in Faba bean (Vicia faba L. spp. Minor). J Plant Growth Regul. 2019;38:1153-60. DOI: 10.1007/s00344-019-09920-1.10.1007/s00344-019-09920-1Search in Google Scholar

[27] Labes MM. A possible explanation for the effect of magnetic fields on biological systems. Nature. 1966;211:968. DOI: 10.1038/211968a0.10.1038/211968a05968306Search in Google Scholar

[28] Ueno S. Biological effects of magnetic fields. IEEE Trans J Magn Japan. 1992;7:580-5. DOI: 10.1109/TJMJ.1992.4565451.10.1109/TJMJ.1992.4565451Search in Google Scholar

[29] Górski R, Dorna H, Rosińska A, Szopińska D, Wosiński S. Effects of electromagnetic fields and their shielding on the quality of carrot (Daucus carota L.) seeds. Ecol Chem Eng S. 2019;26:785-95. DOI: 10.1515/eces-2019-0055.10.1515/eces-2019-0055Search in Google Scholar

[30] Martínez E, Flórez M, Maqueda R, Carbonell MV, Amaya JM. Pea (Pisum sativum L.) and lentil (Lens culinaris, Medik) growth stimulation due to exposure to 125 and 250 mT stationary fields. Polish J Environ Stud. 2009;16:657-63. Available from: http://www.pjoes.com/Pea-Pisum-sativum-L-and-Lentil-Lens-culinaris-r-nMedik-Growth-Stimulation-Dueto,88281,0,2.html.Search in Google Scholar

[31] Ćirković S, Bačić J, Paunović N, Popović TB, Trbovich AM, Romčević N, et al. Influence of 340 mT static magnetic field on germination potential and mid-infrared spectrum of wheat. Bioelectromagnetics. 2017;38:533-40. DOI: 10.1002/bem.22057.10.1002/bem.2205728700087Search in Google Scholar

[32] Aladjadjiyan A. The use of physical methods for plant growing stimulation in Bulgaria. J Cent Eur Agric. 2007;8:369-80. Available from: https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=30699.Search in Google Scholar

[33] Asgharipour MR, Omrani MR. Effects of seed pretreatment by stationary magnetic fields on germination and early growth of lentil. Aust J Basic Appl Sci. 2011;5:1650-4. Available from: http://www.ajbasweb.com/old/ajbas/2011/December-2011/1650-1654.pdf.Search in Google Scholar

[34] Iimoto M, Watanabe K, Fujiwara K. Effects of magnetic flux density and direction of the magnetic field on growth and CO2 exchange rate of potato plantlets in vitro. Acta Hortic. 1996:606-10. DOI: 10.17660/ActaHortic.1996.440.106.10.17660/ActaHortic.1996.440.10611541587Search in Google Scholar

[35] Turker M, Temirci C, Battal P, Erez ME. The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyt - Ann Rei Bot. 2007;46:271-84. Available from: https://www.zobodat.at/pdf/PHY_46_2_0271-0284.pdf.Search in Google Scholar

[36] Dicarlo AL, Hargis MT, Penafiel LM, Litovitz TA. Short-term magnetic field exposures (60 Hz) induce protection against ultraviolet radiation damage. Int J Radiat Biol. 1999;75:1541-9. DOI: 10.1080/095530099139142.10.1080/09553009913914210622260Search in Google Scholar

[37] Kataria S, Baghel L, Guruprasad KN. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal Agric Biotechnol. 2017;10:83-90. DOI: 10.1016/j.bcab.2017.02.010.10.1016/j.bcab.2017.02.010Search in Google Scholar

[38] De Souza A, Garcí D, Sueiro L, Gilart F, Porras E, Licea L. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics. 2006;27:247-57. DOI: 10.1002/bem.20206.10.1002/bem.2020616511881Search in Google Scholar

[39] Lewandowska S, Michalak I, Niemczyk K, Detyna J, Bujak H, Arik P. Influence of the static magnetic field and algal extract on the germination of soybean seeds. Open Chem. 2019;17:516-25. DOI: 10.1515/chem-2019-0039.10.1515/chem-2019-0039Search in Google Scholar

[40] Maffei ME. Magnetic field effects on plant growth, development, and evolution. Front Plant Sci. 2014;5:445. DOI: 10.3389/fpls.2014.00445.10.3389/fpls.2014.00445415439225237317Search in Google Scholar

[41] Michalak I, Lewandowska S, Niemczyk K, Detyna J, Bujak H, Arik P, et al. Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Eng Life Sci. 2019;19:986-99. DOI: 10.1002/elsc.201900039.10.1002/elsc.201900039699907032624988Search in Google Scholar

[42] Tretiak O, Blümler P, Bougas L. Variable single-axis magnetic-field generator using permanent magnets. AIP Adv. 2019;9:115312. DOI: 10.1063/1.5130896.10.1063/1.5130896Search in Google Scholar

[43] Qiu J, Liu X, Hu Z, Chang Q, Gao Y, Yang J, et al. Multi-directional electromagnetic vibration energy harvester using circular Halbach array. AIP Adv. 2017;7:056672. DOI: 10.1063/1.4978403.10.1063/1.4978403Search in Google Scholar

[44] Michalak I, Lewandowska S, Detyna J, Olsztyńska-Janus S, Bujak H, Pacholska P. The effect of macroalgal extracts and near infrared radiation on germination of soybean seedlings: preliminary research results. Open Chem. 2018;16:1066-76. DOI: 10.1515/chem-2018-0115.10.1515/chem-2018-0115Search in Google Scholar

[45] Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, et al. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African J Bot. 2009;75:351-5. DOI: 10.1016/j.sajb.2008.10.009.10.1016/j.sajb.2008.10.009Search in Google Scholar

[46] Lodhi KK, Choubey NK, Dwivedi SK, Pal A, Kanwar PC. Impact of seaweed saps on growth, flowering behaviour and yield of soybean [Glycine max (L.) Merrill.]. Bioscan. 2015;10:479-83. Available from: http://www.thebioscan.in/Journal%20Supplement/101Sup45%20K.%20K.%20LODHI.pdf.Search in Google Scholar

[47] Michalak I, Mironiuk M, Marycz K. A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM-EDX and FTIR techniques. PLoS One. 2018;13:e0205590. DOI: 10.1371/journal.pone.0205590.10.1371/journal.pone.0205590618887230321205Search in Google Scholar

[48] Marycz K, Michalak I, Kocherova I, Marędziak M, Weiss C. The Cladophora glomerata enriched by biosorption process in Cr(III) improves viability, and reduces oxidative stress and apoptosis in equine metabolic syndrome derived adipose mesenchymal stromal stem cells (ASCs) and their extracellular vesicles (MV’s). Mar Drugs. 2017;15:385. DOI: 10.3390/md15120385.10.3390/md15120385574284529292726Search in Google Scholar

[49] Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, et al. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul. 2013;32:31-52. DOI: 10.1007/s00344-012-9273-9.10.1007/s00344-012-9273-9Search in Google Scholar

[50] Alobwede E, Leake JR, Pandhal J. Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma. 2019;334:113-23. DOI: 10.1016/j.geoderma.2018.07.049.10.1016/j.geoderma.2018.07.049Search in Google Scholar

[51] Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J Am Soc Hortic Sci. 2004;129:523-9. DOI: 10.21273/JASHS.129.4.0523.10.21273/JASHS.129.4.0523Search in Google Scholar

[52] Sakhnini L. Influence of Ca2+ in biological stimulating effects of AC magnetic fields on germination of bean seeds. J Magn Magn Mater. 2007;310:e1032-4. DOI: 10.1016/j.jmmm.2006.11.077.10.1016/j.jmmm.2006.11.077Search in Google Scholar

[53] Shine MB, Guruprasad KN, Anand A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics. 2011;32:474-84. DOI: 10.1002/bem.20656.10.1002/bem.2065621381047Search in Google Scholar

[54] Torres J, Socorro A, Hincapié E. Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.). Bioelectromagnetics. 2018;39:343-51. DOI: 10.1002/bem.22120.10.1002/bem.2212029638006Search in Google Scholar

[55] Pietruszewski S, Kania K. Effect of magnetic field on germination and yield of wheat. Int Agrophysics. 2010;24:297-302. Available from: http://www.international-agrophysics.org/Effect-of-magnetic-field-on-germination-and-yield-of-wheat,106385,0,2.html.Search in Google Scholar

[56] Kavi PS. The effect of magnetic treatment of soybean seed on its moisture absorbing capacity. Sci Cult. 1977;43:405-406. Available from: https://agris.fao.org/agris-search/search.do?recordID=IN19780278775.Search in Google Scholar

[57] Martinez E, Carbonell MV, Flórez M, Amaya JM, Maqueda R. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. Int Agrophysics. 2009;23:45-9. Available from: http://www.international-agrophysics.org/Germination-of-tomato-seeds-Lycopersicon-esculentum-L-under-magnetic-field,106414,0,2.html.Search in Google Scholar

[58] Anand A, Nagarajan S, Verma APS, Joshi DK, Pathak PC, Bhardwaj J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian J Biochem Biophys. 2012;49:63-70. Available from: https://pubmed.ncbi.nlm.nih.gov/22435146/.Search in Google Scholar

[59] Boe AA, Salunkhe DK. Effects of magnetic fields on tomato ripening. Nature. 1963;199:91-2. https://www.nature.com/articles/199091a0.10.1038/199091a0Search in Google Scholar

[60] Carbonell MV, Martinez E, Amaya JM. Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro- Magnetobiol. 2000;19:121-8. DOI: 10.1081/JBC-100100303.10.1081/JBC-100100303Search in Google Scholar

[61] Radhakrishnan R, Kumari BDR. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population. Indian J Biochem Biophys. 2013;50:312-7. Available from: https://pubmed.ncbi.nlm.nih.gov/24772951/.Search in Google Scholar

[62] Rochalska M. Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika. 2005;50:S25-8. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ6-0005-0019.Search in Google Scholar

[63] Shine MB, Guruprasad K, Anand A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics. 2012;33:428-37. DOI: 10.1002/bem.21702.10.1002/bem.2170222253132Search in Google Scholar

[64] Adey WR. Biological effects of electromagnetic fields. J Cell Biochem. 1993;51:410-6. DOI: 10.1002/jcb.2400510405.10.1002/jcb.24005104058388394Search in Google Scholar

[65] Strasserf RJ, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol. 1995;61:32-42. DOI: 10.1111/j.1751-1097.1995.tb09240.x.10.1111/j.1751-1097.1995.tb09240.xSearch in Google Scholar

[66] Govindje E. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol. 1995;22:131-60. DOI: 10.1071/PP9950131.10.1071/PP9950131Search in Google Scholar

[67] Albert KR, Mikkelsen TN, Ro-Poulsen H. Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll a fluorescence parameters from fluorescence transients. Physiol Plant. 2005;124:208-26. DOI: 10.1111/j.1399-3054.2005.00502.x.10.1111/j.1399-3054.2005.00502.xSearch in Google Scholar

[68] Jan L, Fefer D, Košmelj K, Gaberščik A, Jerman I. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor. Bioelectromagnetics. 2015;36:190-203. DOI: 10.1002/bem.21898.10.1002/bem.21898Search in Google Scholar

[69] Srikanth D. Influence of magnetic and electric field on germination attributes of chilli (Capsicum annum L.) seeds. Int J Pure Appl Biosci. 2018;6:496-501. DOI: 10.18782/2320-7051.6723.10.18782/2320-7051.6723Search in Google Scholar

[70] Iqbal M, ul Haq Z, Malik A, Ayoub CM, Jamil Y, Nisar J. Pre-sowing seed magnetic field stimulation: A good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatal Agric Biotechnol. 2016;5:30-7. DOI: 10.1016/j.bcab.2015.12.002.10.1016/j.bcab.2015.12.002Search in Google Scholar

[71] Torres J, Aranzazu-Osorio J, Restrepo-Parra E. Favourable and unfavourable effect of homogeneous static magnetic field on germination of Zea mays L (maize) seeds. J Agric Sci. 2019;11:90. DOI: 10.5539/jas.v11n2p90.10.5539/jas.v11n2p90Search in Google Scholar

[72] Es’kov EK, Darkov AV. Consequences of high-intensity magnetic effects on the early growth processes in plant seeds and the development of honeybees. Biol Bull Russ Acad Sci. 2003;30:512-6. DOI: 10.1023/A:1025858905362.10.1023/A:1025858905362Search in Google Scholar

[73] Bhatnagar D, Deb AR. Some aspects of pregermination exposure of wheat seeds to magnetic fields. II. Effect on some physiological process. Seed Res (New Delhi). 1977;5:129-37. Available from: https://www.researchgate.net/publication/287181702_Some_aspects_of_pregermination_exposure_of_wheat_seeds_to_magnetic_field_II_Effect_on_some_physiological_processes.Search in Google Scholar

[74] Zhadin MN. Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics. 2001;22:27-45. DOI: 10.1002/1521-186x(200101)22:1<27::aid-bem4>3.0.co;2-2.10.1002/1521-186X(200101)22:1<27::AID-BEM4>3.0.CO;2-2Search in Google Scholar

[75] Barnes FS. Mechanisms for electric and magnetic fields effects on biological cells. IEEE Trans Magn. 2005;41:4219-24. DOI: 10.1109/TMAG.2005.855480.10.1109/TMAG.2005.855480Search in Google Scholar

[76] Kavi PS. The effect of non-homogeneous gradient magnetic field susceptibility values in situ ragi seed material. Mysore J Agric Sci. 1983;17:121-3. Available from: https://www.researchgate.net/publication/288043147_The_effect_of_non-homogeneous_gradient_magnetic_field_susceptibility_values_in_situ_ragi_seed_material.Search in Google Scholar

[77] Aceto H, Tobias C, Silver I. Some studies on the biological effects of magnetic fields. IEEE Trans Magn. 1970;6:368-73. DOI: 10.1109/TMAG.1970.1066813.10.1109/TMAG.1970.1066813Search in Google Scholar

eISSN:
1898-6196
Language:
English