Open Access

Impact of optical indices on particle size distribution of activated sludge measured by laser diffraction method


Cite

[1] Lee S, Basu S, Tyler CW, Wei IW. Ciliate populations as bio-indicators at Deer Island treatment plant. Advances Environ Res. 2004;8(2-4):371-378. DOI: 10.1016/S1093-0191(02)00118-1.10.1016/S1093-0191(02)00118-1Search in Google Scholar

[2] Puigagut J, Salvado H, Garcia J. Short-term harmful effects of ammonia nitrogen on activated sludge microfauna. Water Res. 2005;39(18):4397-4404. DOI: 10.1016/j.watres.2005.08.008.10.1016/j.watres.2005.08.008Search in Google Scholar

[3] Pérez-Uz B, Arregui L, Calvo P, Salvadó H, Fernández N, Rodrígeuz E, et al. Assessment of plausible bioindicators for plant performance in advanced wastewater treatment systems. Water Res. 2010;44(17):5059-5069. DOI: 10.1016/j.watres.2010.07.024.10.1016/j.watres.2010.07.024Search in Google Scholar

[4] Jiang JG, Shen YF. Use of the aquatic protozoa to formulate a community biotic index for an urban water system. Sci Total Environ. 2005;346(1-3):99-111. DOI: 10.1016/j.scitotenv.2004.12.001.10.1016/j.scitotenv.2004.12.001Search in Google Scholar

[5] Madoni P. A sludge biotic index (SBI) for the evaluation of the biological performance of activated-sludge plants based on the microfauna analysis. Water Res. 1994;28(1):67-75. DOI: 10.1016/0043-1354(94)90120-1.10.1016/0043-1354(94)90120-1Search in Google Scholar

[6] Łagód G, Chomczyńska M, Montusiewicz A, Malicki J, Bieganowski A. Proposal of measurement and visualization methods for dominance structures in the saprobe communities. Ecol Chem Eng S. 2009;16(3):369-377.Search in Google Scholar

[7] Malicki J, Montusiewicz A, Bieganowski A. Improvement of counting helminth eggs with internal standard. Water Res. 2001:35(9):2333-2335. DOI: 10.1016/S0043-1354(00)00517-0.10.1016/S0043-1354(00)00517-0Search in Google Scholar

[8] Bożek U, Kłapeć T. Correlation between biological agents and levels of heavy metals in municipal sewage sludge. Ann Agricult Environ Med. 2008;15(2):295-299.Search in Google Scholar

[9] Arregui L, Serrano S, Linares M, Pérez-Uz B, Guinea A. Ciliate contributions to bioaggeregation: laboratory assays with axenic cultures of Tetrahymena thermophila. Internat Microbiol. 2007;10(2):91-96.Search in Google Scholar

[10] Arregui L, Linares M, Pérez-Uz B, Guinea A, Serrano S. Involvement of crawling and attached ciliates in the aggregation of particles in wasterwater treatment plants. Air Soil Water Res. 2008;1:13-19.10.4137/ASWR.S752Search in Google Scholar

[11] Pajdak-Stós A, Fiałkowska E, Fyda J, Babko R. Resistance of nitrifiers inhabiting activated sludge to ciliate grazing. Water Sci Technol. 2010;61(3):573-580. DOI: 10.2166/wst.2010.868.10.2166/wst.2010.86820150692Search in Google Scholar

[12] Spanjers H, Vanrolleghem P. Respirometry as a tool for rapid characterization of wastewater and activated sludge. Water Sci Technol. 1995;31(2):105-114.10.2166/wst.1995.0082Search in Google Scholar

[13] Lagarde F, Tusseau-Vuillemin M, Lessard P, Heduit A, Dutrop F, Mouchel JM. Variability estimation of urban wastewater biodegradable fractions by respirometry. Water Res. 2005;39(19):4768-4778. DOI: 10.1016/j.watres.2005.08.026.10.1016/j.watres.2005.08.02616242169Search in Google Scholar

[14] Vollertsen J, Hvitved-Jacobsen T. Biodegradability of wastewater - a method for COD-fractionation. Water Sci Technol. 2002;45(3):25-34.10.2166/wst.2002.0046Search in Google Scholar

[15] Mąkinia J, Rosenwinkel KH, Spering V. Long term simulation of the activated sludge process at the Hanover-Gruemmerward pilot WWTP. Water Res. 2005;39(8):1489-1502. DOI: 10.1016/j.watres.2005.01.023.10.1016/j.watres.2005.01.023Search in Google Scholar

[16] Dulekgurgen E, Dogruel S, Karahan O, Orhon D. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 2006;40(2):273-282. DOI: 10.1016/j.watres.2005.10.032.10.1016/j.watres.2005.10.032Search in Google Scholar

[17] Pasztor I, Thury P, Pulai J. Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment. Internat J Environ Sci Technol. 2009;6(1):51-56.10.1007/BF03326059Search in Google Scholar

[18] Drewnowski J, Makinia J. Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Sci Technol. 2013;67(9):2067-2074. DOI: 10.2166/wst.2013.092.10.2166/wst.2013.092Search in Google Scholar

[19] Nosalewicz M, Stępniewska Z, Nosalewicz A. Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater. Internat Agrophys. 2013;27(3):299-304. DOI: 10.2478/v10247-012-0098-3.10.2478/v10247-012-0098-3Search in Google Scholar

[20] Qiu L, Zhu J, Zhu Y, Hong Y, Wang K,. Deng J. Land use changes induced soil organic carbon variations in agricultural soils of Fuyang County, China. J Soil Sediment. 2013;13(6):981-988. DOI: 10.1007/s11368-013-0684-4.10.1007/s11368-013-0684-4Search in Google Scholar

[21] Rojas R, Morillo J, Usero J, Delgado-Moreno L, Gan J. Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Sci Total Environ. 2013;458:614-623. DOI: 10.1016/j.scitotenv.2013.04.032.10.1016/j.scitotenv.2013.04.032Search in Google Scholar

[22] Biggs CA, Lant PA. Activated sludge flocculation: on-line determination of floc size and the effect of shear. Water Res. 2000;34(9):2542-2550. DOI: 10.1016/S0043-1354(99)00431-5.10.1016/S0043-1354(99)00431-5Search in Google Scholar

[23] Guellil A, Thomas F, Block JC, Bersillon JL, Ginestet P. Transfer of organic matter between wastewater and activated sludge flocs. Water Res. 2001;35(1):143-150. DOI: 10.1016/S0043-1354(00)00240-2.10.1016/S0043-1354(00)00240-2Search in Google Scholar

[24] Nopens I, Biggs CA, De Clerq B, Govoreanu R, Wilen BM, Lant P, et al. Modeling the activated sludge flocculation process combining laser light diffraction particle sizing and population balance modelling (PBM). Water Sci Technol. 2002;45(6):41-49.10.2166/wst.2002.0092Search in Google Scholar

[25] Bieganowski A, Łagód G, Ryżak M, Montusiewicz A, Chomczyńska M, Sochan A. Measurement of activated sludge particle diameters using laser diffraction method. Ecol Chem Eng S. 2012;19(4):597-608. DOI: 10.2478/v10216-011-0042-7.10.2478/v10216-011-0042-7Search in Google Scholar

[26] Tuszyńska A, Kołecka K. Particle size analysis of suspensions in removing of organic matter and phosphorus from wastewater and surface water. Architect Civil Eng Environ. 2012;4:113-119.Search in Google Scholar

[27] Dereszewska A, Tuszyńska A, Cytawa S. Application of the laser diffraction particle size analyzer to the study of the changes of activated sludge structure in the presence of surfactant. Proc ECOpole. In print.Search in Google Scholar

[28] Chung HY, Lee DJ. Porosity and interior structure of flocculated activated sludge floc. J Colloid Interface Sci. 2003;267(1):136-143. DOI: 10.1016/S0021-9797(03)00682-9.10.1016/S0021-9797(03)00682-9Search in Google Scholar

[29] Chu CP, Lee DJ. Structural analysis of sludge flocs. Advan Powder Technol. 2004;15(5):515-532. DOI: 10.1163/1568552042000246.10.1163/1568552042000246Search in Google Scholar

[30] Ryżak M, Bieganowski A. Methodological aspects of determining soil particle-size distribution using the laser-diffraction method. J Plant Nutr Soil Sci. 2011;174(4):624-633. DOI: 10.1002/jpln.201000255.10.1002/jpln.201000255Search in Google Scholar

[31] Kovalenko CG, Babuin D. Inherent factors limiting the use of laser diffraction for determining particle size distributions of soil and related samples. Geoderma. 2013;193:22-28. DOI: 10.1016/j.geoderma.2012.09.006.10.1016/j.geoderma.2012.09.006Search in Google Scholar

[32] Wang WP, Liu JL, Zhang JB, Li XP, Cheng YN, Xin WW, et al. Evaluation of laser diffraction analysis of particle size distribution of typical soils in China and comparison with the Sieve-Pipette method. Soil Sci. 2013;178(4):194-204. DOI: 10.1097/SS.0b013e31829908be.10.1097/SS.0b013e31829908beSearch in Google Scholar

[33] Ismail SB, de La Parra CJ, Temmink H, van Lier JB. Extracellular polymeric substances (EPS) in upflow anaerobic sludge blanket (UASB) reactors operated under high salinity conditions. Water Res. 2010;44(6):1909-1917. DOI: 10.1016/j.watres.2009.11.039.10.1016/j.watres.2009.11.03920015531Search in Google Scholar

[34] Karhu M, Kuokkanen V, Kuokkanen T, Rämö J. Bench scale electrocoagulation studies of bio oil-in-water and synthetic oil-in-water emulsions. Sep Purif Technol. 2012;96:296-305. DOI: 10.1016/j.seppur.2012.06.003.10.1016/j.seppur.2012.06.003Search in Google Scholar

[35] Wojcieszczuk T, Hammal O, Malinowski R, Wojcieszczuk M, Chorągwicki Ł. The activity of chemical components of light and heavy soil in Syria after use of municipal sewage sludge from Deir Ezzor City (in Polish). Soil Sci Ann. 2012;63(3):43-48.10.2478/v10239-012-0032-1Search in Google Scholar

[36] Walkiewicz A, Bulak P, Brzezińska M, Włodarczyk T, Polakowski C. Kinetics of methane oxidation in selected mineral soils. Internat Agrophys. 2012;26(4):401-406. DOI: 10.2478/v10247-012-0056-0.10.2478/v10247-012-0056-0Search in Google Scholar

[37] Nosalewicz A, Lipiec J. The effect of compacted soil layers on vertical root distribution and water uptake by wheat. Plant Soil. 2014;375:229-240. DOI:10.1007/s11104-013-1961-0.10.1007/s11104-013-1961-0Search in Google Scholar

[38] Sochan A, Bieganowski A, Ryżak M, Dobrowolski R, Bartmiński P. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int Agrophys. 2012;26(1):99-102. DOI: 10.2478/v10247-012-0015-9.10.2478/v10247-012-0015-9Search in Google Scholar

[39] Eikelboom DH. Process Control of Activated Sludge Plants by Microscopic Investigation. London: IWA Publishing; 2000. Search in Google Scholar

[40] Martín-Cereceda M, Serrano S, Guinea A. A comparative study of ciliated protozoa communities in activated-sludge plants. FEMS Microbiol Ecol. 1996;21(4):267-276. DOI: 10.1111/j.1574-6941.1996.tb00123.x.10.1111/j.1574-6941.1996.tb00123.xSearch in Google Scholar

[41] Pogue AJ, Gilbride KA. Impact of protozoan grazing on nitrification and the ammonia- and nitrite-oxidizing bacterial communities in activated sludge. Can J Microbiol. 2007;53(5):559-571. DOI: 10.1139/W07-027.10.1139/W07-027Search in Google Scholar

[42] Malvern Instruments Ltd., Operators Guide, MAN 0247, Issue 2.0, October 1999, Worcestershire. WR14 1XZ, United Kingdom.Search in Google Scholar

[43] Karczmarek AM, Gaca J. Effect of two-stage thermal disintegration on particle size distribution in sewage sludge. Polish J Chem Technol. 2013;15(3):69-73. DOI: 10.2478/pjct-2013-0047.10.2478/pjct-2013-0047Search in Google Scholar

[44] Govoreanu R, Saveyn H, Van der Meeren P, Vanrolleghem PA. Simultaneous determination of activated sludge floc size distribution by different techniques. Water Sci Technol. 2004;50(12):39-46.10.2166/wst.2004.0693Search in Google Scholar

[45] Latimer P, Wamble F. Light scattering by aggregates of large colloidal particles. Appl Optics. 1982;21(13):2447-2455.10.1364/AO.21.002447Search in Google Scholar

[46] Guan J, Waite TD, Amal R, Bustamante H, Wukasch R. Rapid determination of fractal structure of bacterial assemblages in wastewater treatment: Implications to process optimization. Water Sci Technol. 1998;28(2):9-15. DOI: 10.1016/S0273-1223(98)00426-0.10.1016/S0273-1223(98)00426-0Search in Google Scholar

[47] ISO 13320:2009. Particle size analysis - Laser diffraction methods. International Organization for Standardization. Geneva. Switzerland.Search in Google Scholar

[48] Le NT, Julcour C, Ratsimba B, Delmas H. Improving sewage sludge ultrasonic pretreatment under pressure by changing initial pH. J Environ Manage. 2013;128:548-554. DOI: 10.1016/j.jenvman.2013.06.001.10.1016/j.jenvman.2013.06.00123831677Search in Google Scholar

eISSN:
1898-6196
Language:
English