[Aiello, G., Catania, P., Vallone, M., Venticinque, M., 2022. Worker safety in agriculture 4.0: A new approach for mapping operator’s vibration risk through Machine Learning activity recognition. Computers and Electronics in Agriculture, 193, DOI: 10.1016/j.compag.2021.106637.]Search in Google Scholar
[Bahlo, C., Dahlhaus, P., Thompson, H., Trotter, M., 2019. The role of interoperable data standards in precision livestock farming in extensive livestock systems: A review. Computers and Electronics in Agriculture, 156, 459–466, DOI: 10.1016/j.compag.2018.12.007.]Search in Google Scholar
[Baum, S. E., Machalaba, C., Daszak, P., Salerno, R. H., Karesh, W. B., 2017. Evaluating one health: Are we demonstrating effectiveness?. One Health, 3, 5–10, DOI: 10.1016/j.onehlt.2016.10.004.]Search in Google Scholar
[Berckmans, D., 2014. Precision livestock farming technologies for welfare management in intensive livestock systems. Revue Scientifique et Technique, 33(1), 189-96, DOI: 10.20506/rst.33.1.2273.]Search in Google Scholar
[Boursianis, D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G.,Wan, S., Goudos, S. K., 2020. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: a comprehensive review. Internet of Things, 12, DOI: 10.1016/j.iot.2020.100187]Search in Google Scholar
[Britt, J. H., Cushman, R. A., Dechow, C. D., Dobson, H., Humblot, P., Hutjens, M. F., Jones, G. A., Ruegg, P. S., Sheldon, I. M., Stevenson, J. S., 2018. Invited review: Learning from the future— A vision for dairy farms and cows in 2067. Journal of Dairy Science, 101, 3722–3741, DOI: 10.3168/jds.2017-14025.]Search in Google Scholar
[Buller, H., Blokhuis, H., Lokhorst, K., Silberberg, M., Veissier, I., 2020. Animal Welfare Management in a Digital World. Animals, 10, 1779, DOI: 10.3390/ani10101779.]Search in Google Scholar
[Caja, G., Castro-Costa, A., Knight, C. H., 2016. Engineering to support wellbeing of dairy animals. Journal of Dairy Research, 83, 136–147, DOI: 10.1017/S0022029916000261.]Search in Google Scholar
[Da Rosa Righi, R., Goldschmidt, G., Kunst, R., Deon, C., André da Costa, C., 2020. Towards combining data prediction and internet of things to manage milk production on dairy cows. Computers and Electronics in Agriculture, 169, DOI: 10.1016/j.compag.2019.105156 105156.]Search in Google Scholar
[Da Silveira, F., Lermen, F. H., Amaral, F. G., 2021. An overview of agriculture 4.0 development: systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, DOI: 10.1016/j.compag.2021.106405]Search in Google Scholar
[Dawkins, M. S., 2017. Animal welfare with and without consciousness. Journal of Zoology, 301, 1–10, DOI: 10.1111/jzo.12434.]Search in Google Scholar
[Dineva, K., Parvanov, D., Atanasova, T., Mateeva, G., Petrov, P., Kostadinov, G., 2021. Towards CPS/IoT System for Livestock Smart Farm Monitoring. International Conference Automatics and Informatics (ICAI), 252-255.]Search in Google Scholar
[Dziuba, S., Szczyrba, 2023. Agile management in Polish organic food processing enterprises. Production Engineering Archives, 29(1), (2023). 101-107. DOI: 10.30657/pea.2023.29.12]Search in Google Scholar
[Eastwood, C. R., Edwards, J. P., Turner, J. A., 2021. Review: Anticipating alternative trajectories for responsible Agriculture 4.0 innovation in livestock systems. Animal, 15(1), DOI: 10.1016/j.animal.2021.100296.]Search in Google Scholar
[Eastwood, C. R., Renwick, A., 2020. Innovation uncertainty impacts the adoption of smarter farming approaches. Frontiers in Sustainable Food Systems, 4, 1–14, DOI: 10.3389/fsufs.2020.00024.]Search in Google Scholar
[Fielding, D., 1999. Human–Livestock Interactions – The Stockperson and the Productivity and Welfare of Intensively Farmed Animals. P.H. Hemsworth and G.J. Coleman. Veterinary Research Communications, 23, 264.]Search in Google Scholar
[Fobel, P., Kuzior, A. 2019. The future (Industry 4.0) is closer than we think. Will it also be ethical? Proceedings Of The International Conference Of Computational Methods In Sciences And Engineering 2019 (ICCMSE-2019). https://doi.org/10.1063/1.5137987]Search in Google Scholar
[Green, A. C., Johnston, I. N., Clark, C. E. F., 2017. Invited review: The evolution of cattle bioacoustics and application for advanced dairy systems. Animal, 12, 1250–1259, DOI: 10.1017/S1751731117002646.]Search in Google Scholar
[Griepentrog, H. W., 2017. Green Future – Smart Technology: Chances and challenges of digitalization in agriculture. German Agricultural Society (DLG), Pressenmitteilung, 3.]Search in Google Scholar
[Guntoro, B., Hoang, Q. N., A’yun, A. Q., 2019. Dynamic Responses of Livestock Farmers to Smart Farming. IOP Conference Series: Earth and Environmental Science. 372(1), DOI: 10.1088/1755-1315/372/1/012042.]Search in Google Scholar
[Halachmi, I., Guarino, M., 2016. Editorial: Precision livestock farming: a ‘per animal’approach using advanced monitoring technologies. Animal 10, 1482–1483, DOI: 10.1017/S1751731116001142.]Search in Google Scholar
[Herrero, M., Thornton, P. K., 2013. Livestock and global change: Emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences, 110, DOI: 10.1073/pnas.1321844111.]Search in Google Scholar
[Ingaldi, M., Ulewicz, R., 2020. Problems with the Implementation of Industry 4.0 in Enterprises from the SME Sector. Sustainability 12, 217. https://doi.org/10.3390/su12010217]Search in Google Scholar
[Jędrych M., Kuś, J., 2016. Alergiczne zapalenie pęcherzyków płucnych – epidemiologia, etiologia, immunopatogeneza, obraz kliniczny. Postęp Nauk Medycznych, XXIX (1), 44-48.]Search in Google Scholar
[Johar, G., Adha, F. J., Hajamydeen, A. I., Raya, L., Alkawaz, H. H., 2024. The Efficiency in Controlling and Monitoring a Poultry Farm based on Internet of Things (IoT). 2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), 29 June 2024, Shah Alam, Malaysia.]Search in Google Scholar
[Klerkx, L., Begemann, S., 2020. Supporting food systems transformation: The what, why, who, where and how of mission-oriented agricultural innovation systems. Agricultural Systems, 184, DOI: 10.1016/j.agsy.2020.102901 102901.]Search in Google Scholar
[Klerkx, L., Rose, D., 2020. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways?. Global Food Security, 24, DOI: 10.1016/j.gfs.2019.100347 100347.]Search in Google Scholar
[Knight, C. H., 2020. Review: Sensor techniques in ruminants: more than fitness trackers. Animal 14 (S1), 187–195, DOI: 10.1017/S1751731119003276.]Search in Google Scholar
[Kraft, M., Bernhardt, H., Brunsch, R., Büscher, W., Colangelo, E., Graf, H., Marquering, J., Tapken, H., Toppel, K., Westerkamp, C., Ziron, M. 2022. Can Livestock Farming Benefit from Industry 4.0 Technology? Evidence from Recent Study. Applied Sciences, 12, DOI: 10.3390/app122412844.]Search in Google Scholar
[Krynke, M., Ivanova, T.N., Revenko, N.F., 2022. Factors, Increasing the Efficiency of Work of Maintenance, Repair and Operation Units of Industrial Enterprises. Management Systems in Production Engineering, 30(1), 91-97, DOI: 10.2478/mspe-2022-0012]Search in Google Scholar
[Kuzior, A., Kettler, K., Rąb, Ł. 2022. Digitalization of Work and Human Resources Processes as a Way to Create a Sustainable and Ethical Organization. Energies, 15, 172. https://doi.org/10.3390/en15010172]Search in Google Scholar
[Lashari, M. H., Karim S., Alhussein, M., Hoshu, A. A., Aurangzeb, K., Anwar M. S., 2023. Internet of Things-based sustainable environment management for large indoor facilities. PeerJ Computer Science 9, DOI: 10.7717/peerj-cs.1623.]Search in Google Scholar
[Neethirajan, S., 2020. The role of sensors, big data and machine learning in modern animal farming. Sensing and Bio-Sensing Research, 29: DOI: 10.1016/j.sbsr.2020.100367 100367.]Search in Google Scholar
[Norton, T., Chen, C., Larsen, M. L. V., Berckmans, D., 2019. Review: Precision livestock farming: building ‘digital representations’ to bring the animals closer to the farmer. Animal, 13, DOI: 10.1017/S175173111900199X.]Search in Google Scholar
[Olejnik, K., Popiela, E., Opaliński, S., 2022. Emerging Precision Management Methods in Poultry Sector. Agriculture, 12(5), 718, DOI: 10.3390/agriculture12050718.]Search in Google Scholar
[Pacana, A., Ulewicz, R., 2017. Research of determinants motiving to implement the environmental management system, Polish Journal of Management Studies, 16(1), 165–174.]Search in Google Scholar
[Pan, L., Xu, M., Xi, L., Hao, Y., 2016. Research of livestock farming IoT system based on RESTful web services. 5th International Conference on Computer Science and Network Technology (ICCSNT), Changchun, China, 113-116, DOI: 10.1109/ICCSNT.2016.8070130.]Search in Google Scholar
[Paris, B., Vandorou, F., Balafoutis, A. T., Vaiopoulos, K., Kyriakarakos, G., Manolakos, D., Papadakis, G., 2022. Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renewable and Sustainable Energy Reviews, 158, DOI: 10.1016/j.rser.2022.112098.]Search in Google Scholar
[Patel, H., Samad, A., Hamza, M., Muazzam, A., Harahap, M. K., 2022. Role of Artificial Intelligence in Livestock and Poultry Farming. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 6(4), 2425-2429, DOI: 10.33395/sinkron.v7i4.11837.]Search in Google Scholar
[Rautiainen, R. H., Lange, J. L., Hodne, C. J., Schneiders, S., Donham, K. J., 2004. Injuries in the Iowa certified safe farm study. Journal of Agricultural Safety and Health, 51–63, DOI: 10.13031/2013.15674.]Search in Google Scholar
[Romera, A. J., Bos, A. P., Neal, M., Eastwood, C. R., Chapman, D., McWilliam, W., Royds, D., O’Connor, C., Brookes, R., Connolly, J., Hall, P., Clinton, P. W., 2020. Designing future dairy systems for New Zealand using reflexive interactive design. Agricultural Systems 181, DOI: 10.1016/j.agsy.2020.102818 102818.]Search in Google Scholar
[Rose, D. C., Wheeler, R., Winter, M., Lobley, M., Chivers, C. A., 2021. Agriculture 4.0: making it work for people, production, and the planet. Land Use Policy, 100, DOI: 10.1016/j.landusepol.2020.104933.]Search in Google Scholar
[Shalloo, L., O’Donovan, M., Leso, L., Werner, J., Ruelle, E., Geoghegan, A., Delaby, L., O’Leary, N., 2018. Review: Grass-based dairy systems, data and precision technologies. Animal, 12, 262–271. DOI: 10.1017/S175173111800246X.]Search in Google Scholar
[Sih, A., Bell, A. M., Johnson, J. C.,Ziemba, R. E., 2004. Behavioral syndromes: an integrative overview. The quarterly review of biology, 79(3), 241-277, DOI: 10.1086/422893.]Search in Google Scholar
[Szczyrba, A., Dziuba S,. 2023. Good Manufacturing Practices for Quality and Safety Management in the Food Industry, Quality Production Improvement and System Safety, 34, 288–297, Sep. DOI: 10.21741/9781644902691-34.]Search in Google Scholar
[Ślusarczyk, B. Wiśniewska, J., 2024. Barriers and the potential for changes and benefits from the implementation of Industry 4.0 solutions in enterprises. Production Engineering Archives 30(2), 145-154. DOI: 10.30657/pea.2024.30.14]Search in Google Scholar
[Trendov, N. M., Varas, S., Zeng, M., 2019. Digital Technologies in Agriculture and Rural Areas: Status Report. Food and Agriculture Organization of the United Nations, Rome, Italy.]Search in Google Scholar
[Van Limbergen, T., Sarrazin, S., Chantziaras, I., Dewulf, J., Ducatelle, R., Kyriazakis, I., Maes, D., 2020. Risk factors for poor health and performance in European broiler production systems. BMC Veterinary Research, 16(1), 1-13, DOI: DOI: 10.1186/s12917-020-02484-3.]Search in Google Scholar
[Whitfield S., Dixon, J. L., Mulenga, B. P., Ngoma, H., 2015. Conceptualising farming systems for agricultural development research: Cases from Eastern and Southern Africa. Agricultural Systems, 133, 54–62, DOI: 10.1016/j.agsy.2014.09.005.]Search in Google Scholar
[Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M. J., 2017. Big data in smart farming – A review. Agricultural Systems, 153, 69–80. DOI: 10.1016/j.agsy.2017.01.023.]Search in Google Scholar
[Woolhouse, M. E., Gowtage-Sequeria, S., 2005. Host range and emerging and reemerging pathogens. Emerging Infectious Diseases, 11(12), 1842–7. DOI: 10.3201/eid1112.050997.]Search in Google Scholar
[Zhou, W. T., Yamamoto, S., 1997. Effects of environmental temperature and heat production due to food intake on abdominal temperature, shank skin temperature and respiration rate of broilers. British Poultry Science, 38(1), 107-114, DOI: 10.1080/00071669708417949.]Search in Google Scholar