Open Access

Seed Germination Response of Nicotiana rustica L. (Solanaceae) to Salt Stress

 and   
Jun 02, 2025

Cite
Download Cover

Abdul Baki, A.A. & Anderson, J.D. 1973. Vigour determination in soybean by multiple criteria. Crop Sciences, 13: 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x Search in Google Scholar

Abrantes, F.D.L., Ribas, A.F., Vieira, L.G.E., Machado-Neto, N.B. & Custodio, C.C. 2019. Seed germination and seedling vigour of transgenic tobacco (Nicotiana tabacum L.) with increased proline accumulation under osmotic stress. The Journal of Horticultural Science and Biotechnology, 94(2): 220-228. https://doi.org/10.1080/14620316.2018.1499423 Search in Google Scholar

Awaad, H.A. 2023. Mitigation options towards sustainability via agricultural practices. In: Salinity resilience and sustainable crop production under climate change. Earth and Environmental Sciences Library, pp. 303-332. Cham, Switzerland, Springer Nature. https://doi.org/10.1007/978-3-031-48542-8_8 Search in Google Scholar

Carrera-Castaño, G., Calleja-Cabrera, J., Pernas, M., Gómez, L. & Oñate-Sánchez, L. 2020. An updated overview on the regulation of seed germination. Plants, 9(6): 703. https://doi.org/10.3390/plants9060703 Search in Google Scholar

Côme, D. 1970. Les Obstacles à la Germination [Obstacles to Germination]. Monographies de Physiologie Végétale [Monographs on Plant Physiology]. No. 6. Masson, Paris. Search in Google Scholar

Coolbear, P., Francis, A. & Grierson D. 1984. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. Journal of Experimental Botany 35(11): 1609-1617. https://doi.org/10.1093/jxb/35.11.1609 Search in Google Scholar

de Paiva Gonçalves, J., Gasparini, K., Picoli, E.T., Costa, M.D.B., Araujo, W.L., Zsögön, A. & Ribeiro, D.M. 2024. Metabolic control of seed germination in legumes. Journal of Plant Physiology, 154206. https://doi.org/10.1016/j.jplph.2024.154206 Search in Google Scholar

Debez, A., Belghith, I., Pich, A., Taamalli, W., Abdelly, C. & Braun, H.P. 2018. High salinity impacts germination of the halophyte Cakile maritima but primes seeds for rapid germination upon stress release. Physiologia Plantarum, 164(2): 134-144. https://doi.org/10.1111/ppl.12679 Search in Google Scholar

Devkota, K.P., Devkota, M., Rezaei, M. & Oosterbaan, R. 2022. Managing salinity for sustainable agricultural production in saltaffected soils of irrigated drylands. Agricultural Systems, 198: 103390. https://doi.org/10.1016/j.agsy.2022.103390 Search in Google Scholar

Fatehi, F.S. & Ehsanpour, A.A. 2022. The study of salt tolerance in regenerated plants from the roots of tobacco (Nicotiana rustica L.). Environmental Stresses in Crop Sciences, 15(4): 1127-1141. https://doi.org/10.22077/escs.2021.4223.1995 Search in Google Scholar

Finch-Savage, W.E. & Bassel, G.W. 2016. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3): 567-591. https://doi.org/10.1093/jxb/erv490 Search in Google Scholar

Florentine, S.K., Weller, S., Graz, P.F., Westbrooke, M., Florentine, A., Javaid, M., Fernando, N., Chauhan, B.S. & Dowling, K. 2016. Influence of selected environmental factors on seed germination and seedling survival of the arid zone invasive species tobacco bush (Nicotiana glauca R. Graham). The Rangeland Journal, 38(4): 417-425. https://doi.org/10.1071/RJ16022 Search in Google Scholar

Gul, Z., Tang, Z.H., Arif, M. & Ye, Z. 2022. An insight into abiotic stress and influx tolerance mechanisms in plants to cope in saline environments. Biology, 11(4): 597. https://doi.org/10.3390/biology11040597 Search in Google Scholar

Haider, M.Z., Ashraf, M.A., Rasheed, R., Hussain, I., Riaz, M., Qureshi, F.F., Iqbal, M. & Hafeez, A. 2023. Impact of salinity stress on medicinal plants. In: A. Husen & M. Iqbal, eds. Medicinal plants: their response to abiotic stress. pp. 199-239. Singapore, Springer Nature. https://doi.org/10.1007/978-981-19-5611-9_8 Search in Google Scholar

Hajiboland, R., Cheraghvareh, L. & Poschenrieder, C. 2017. Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by silicon. Journal of Plant Nutrition, 40(12): 1661-1676. https://doi.org/10.1080/01904167.2017.1310887 Search in Google Scholar

Halitim A. 1988. Sols des régions arides d’Algérie [Soils of the arid regions of Algeria]. p. 384. OPU, Algiers, Algeria. Search in Google Scholar

Kheloufi, A. & Mansouri, L.M. 2019. Anatomical changes induced by salinity stress in root and stem of two acacia species (A. karroo and A. saligna). Agriculture and Forestry, 65(4): 137-150. https://doi.org/10.17707/AgricultForest.65.4.12 Search in Google Scholar

Kheloufi, A., Mansouri, L.M., Mami, A. & Djelilate, M. 2019. Physio-biochemical characterization of two acacia species (A. karroo Hayn and A. saligna Labill.) under saline conditions. Reforesta, 7: 33-49. https://doi.org/10.21750/REFOR.7.04.66 Search in Google Scholar

Kheloufi, A., Mansouri, L.M. & Meradsi, F. 2023. Effect of salinity on the germination of three species of the Acacia genus (A. karroo, A. saligna and A. tortilis). Acta Universitatis Sapientiae Agriculture and Environment, 15: 52-65. https://doi.org/10.2478/ausae-2023-0005 Search in Google Scholar

Mansouri, L.M., Heleili, N., Boukhatem, Z.F. & Kheloufi, A. 2019. Seed germination and radicle establishment related to type and level of salt in common bean (Phaseolus vulgaris L. var. Djedida). Cercetări Agronomice în Moldova, 52(3): 262-277. https://doi.org/10.46909/cerce-2019-0026 Search in Google Scholar

Mansouri, L.M. & Kheloufi, A. 2024. Salinity effects on germination of Portulaca oleracea L.: A multipurpose halophyte from arid rangelands. Journal of Applied Research on Medicinal and Aromatic Plants, 41: 100549. https://doi.org/10.1016/j.jarmap.2024.100549 Search in Google Scholar

McGaughey, S.A., Qiu, J., Tyerman, S.D. & Byrt, C.S. 2018. Regulating root aquaporin function in response to changes in salinity. Annual Plant Reviews Online, 1(2): 381-416. https://doi.org/10.1002/9781119312994.apr0626 Search in Google Scholar

Mehmood, F., Ubaid, Z., Shahzadi, I., Ahmed, I., Waheed, M.T., Poczai, P. & Mirza, B. 2020. Plastid genomics of Nicotiana (Solanaceae): insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica). PeerJ, 8: e9552. https://doi.org/10.7717/peerj.9552 Search in Google Scholar

Nejatzadeh-Barandozi, F. 2018. Data on seed priming and seedling growth of Barli 21 tobacco varieties under polyethylene glycol and salinity stress conditions. Data in Brief, 20: 454-458. https://doi.org/10.1016/j.dib.2018.08.033 Search in Google Scholar

Orchard, T. 1977. Estimating the parameters of plant seedling emergence. Seed Science and Technology, 5(1): 61-69. Search in Google Scholar

Rashed, S.H. 2020. Effect of mole drain spacing, some soil amendments and boron fertilization on improving some soil properties and sugar beet productivity in salt-affected soils. Journal of Soil Sciences and Agricultural Engineering, 11(7): 341-347. https://doi.org/10.21608/jssae.2020.109701 Search in Google Scholar

Reed, R.C., Bradford, K.J. & Khanday, I. 2022. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity, 128(6): 450-459. https://doi.org/10.1038/s41437-022-00497-2 Search in Google Scholar

SAS. 2002. Statistical Analysis System: Version 9.0. SAS Institute Inc., Cary. Search in Google Scholar

Shin, S., Aziz, D., El-sayed, M.E.A., Hazman, M., Almas, L., McFarland, M., El Din, A.S. & Burian, S.J. 2022. Systems thinking for planning sustainable desert agriculture systems with saline groundwater irrigation: a review. Water, 14(20): 3343. https://doi.org/10.3390/w14203343 Search in Google Scholar

Singh, M., Nara, U., Kumar, A., Choudhary, A., Singh, H. & Thapa, S. 2021. Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology, 19(1): 173. https://doi.org/10.1186/s43141-021-00274-4 Search in Google Scholar

Soni, P.G., Basak, N., Rai, A.K., Sundha, P., Chandra, P. & Yadav, R.K. 2023. Occurrence of salinity and drought stresses: status, impact, and management. In: A. Kumar, P. Dhansu & A. Mann, eds. Salinity and drought tolerance in plants. pp. 1-28. Singapore, Springer Nature. https://doi.org/10.1007/978-981-99-4669-3_1 Search in Google Scholar

Srivastava, P., Wu, Q.S. & Giri, B. 2019. Salinity: an overview. In: B. Giri & A. Varma, eds. Microorganisms in Saline Environments: Strategies and Functions. Soil Biology Series, Vol. 56. pp. 3-18. Switzerland, Springer Nature. https://doi.org/10.1007/978-3-030-18975-4_1 Search in Google Scholar

Tlahig, S., Bellani, L., Karmous, I., Barbieri, F., Loumerem, M. & Muccifora, S. 2021. Response to salinity in legume species: An insight on the effects of salt stress during seed germination and seedling growth. Chemistry & Biodiversity, 18(4): e2000917. https://doi.org/10.1002/cbdv.202000917 Search in Google Scholar

Trușcă, M., Gâdea, Ș., Vidican, R., Stoian, V., Vâtcă, A., Balint, C., Stoian, V.A., Horvat, M. & Vâtcă, S. 2023. Exploring the research challenges and perspectives in ecophysiology of plants affected by salinity stress. Agriculture, 13(3): 734. https://doi.org/10.3390/agriculture13030734 Search in Google Scholar

Uçarlı, C. 2020. Effects of salinity on seed germination and early seedling stage. In: S. Fahad, S. Saud, Y. Chen, C. Wu & D. Wang, eds. Abiotic Stress in Plants, pp. 1-27. InTechOpen, London. https://doi.org/10.5772/intechopen.93647 Search in Google Scholar

Xu, Y., Zheng, X., Song, Y., Zhu, L., Yu, Z., Gan, L., Zhou, S., Liu, H., We, F. & Zhu, C. 2018. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Scientific Reports, 8(1): 8873. https://doi.org/10.1038/s41598-018-27274-8 Search in Google Scholar

Yan, H., Jia, H., Chen, X., Hao, L., An, H. & Guo, X. 2014. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant and Cell Physiology, 55(12): 2060-2076. https://doi.org/10.1093/pcp/pcu133 Search in Google Scholar

Zhang, X., Zhang, Y., Li, M., Jia, H., Wei, F., Xia, Z., Zhang, X., Chang, J. & Wang, Z. 2024. Overexpression of the WRKY transcription factor gene NtWRKY65 enhances salt tolerance in tobacco (Nicotiana tabacum). BMC Plant Biology, 24(1): 326. https://doi.org/10.1186/s12870-024-04966-0 Search in Google Scholar

Zou, X., BK, A., Abu-Izneid, T., Aziz, A., Devnath, P., Rauf, A., Mitra, S., Emran, T.B., Mujawah, A.A.H., Lorenzo, J.M., Mubarak, M.S., Wilairatana, P. & Suleria, H.A.R. 2021. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomedicine & Pharmacotherapy, 143: 112191. https://doi.org/10.1016/j.biopha.2021.112191 Search in Google Scholar