[
Abdul Baki, A.A. & Anderson, J.D. 1973. Vigour determination in soybean by multiple criteria. Crop Sciences, 13: 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
]Search in Google Scholar
[
Abrantes, F.D.L., Ribas, A.F., Vieira, L.G.E., Machado-Neto, N.B. & Custodio, C.C. 2019. Seed germination and seedling vigour of transgenic tobacco (Nicotiana tabacum L.) with increased proline accumulation under osmotic stress. The Journal of Horticultural Science and Biotechnology, 94(2): 220-228. https://doi.org/10.1080/14620316.2018.1499423
]Search in Google Scholar
[
Awaad, H.A. 2023. Mitigation options towards sustainability via agricultural practices. In: Salinity resilience and sustainable crop production under climate change. Earth and Environmental Sciences Library, pp. 303-332. Cham, Switzerland, Springer Nature. https://doi.org/10.1007/978-3-031-48542-8_8
]Search in Google Scholar
[
Carrera-Castaño, G., Calleja-Cabrera, J., Pernas, M., Gómez, L. & Oñate-Sánchez, L. 2020. An updated overview on the regulation of seed germination. Plants, 9(6): 703. https://doi.org/10.3390/plants9060703
]Search in Google Scholar
[
Côme, D. 1970. Les Obstacles à la Germination [Obstacles to Germination]. Monographies de Physiologie Végétale [Monographs on Plant Physiology]. No. 6. Masson, Paris.
]Search in Google Scholar
[
Coolbear, P., Francis, A. & Grierson D. 1984. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. Journal of Experimental Botany 35(11): 1609-1617. https://doi.org/10.1093/jxb/35.11.1609
]Search in Google Scholar
[
de Paiva Gonçalves, J., Gasparini, K., Picoli, E.T., Costa, M.D.B., Araujo, W.L., Zsögön, A. & Ribeiro, D.M. 2024. Metabolic control of seed germination in legumes. Journal of Plant Physiology, 154206. https://doi.org/10.1016/j.jplph.2024.154206
]Search in Google Scholar
[
Debez, A., Belghith, I., Pich, A., Taamalli, W., Abdelly, C. & Braun, H.P. 2018. High salinity impacts germination of the halophyte Cakile maritima but primes seeds for rapid germination upon stress release. Physiologia Plantarum, 164(2): 134-144. https://doi.org/10.1111/ppl.12679
]Search in Google Scholar
[
Devkota, K.P., Devkota, M., Rezaei, M. & Oosterbaan, R. 2022. Managing salinity for sustainable agricultural production in saltaffected soils of irrigated drylands. Agricultural Systems, 198: 103390. https://doi.org/10.1016/j.agsy.2022.103390
]Search in Google Scholar
[
Fatehi, F.S. & Ehsanpour, A.A. 2022. The study of salt tolerance in regenerated plants from the roots of tobacco (Nicotiana rustica L.). Environmental Stresses in Crop Sciences, 15(4): 1127-1141. https://doi.org/10.22077/escs.2021.4223.1995
]Search in Google Scholar
[
Finch-Savage, W.E. & Bassel, G.W. 2016. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3): 567-591. https://doi.org/10.1093/jxb/erv490
]Search in Google Scholar
[
Florentine, S.K., Weller, S., Graz, P.F., Westbrooke, M., Florentine, A., Javaid, M., Fernando, N., Chauhan, B.S. & Dowling, K. 2016. Influence of selected environmental factors on seed germination and seedling survival of the arid zone invasive species tobacco bush (Nicotiana glauca R. Graham). The Rangeland Journal, 38(4): 417-425. https://doi.org/10.1071/RJ16022
]Search in Google Scholar
[
Gul, Z., Tang, Z.H., Arif, M. & Ye, Z. 2022. An insight into abiotic stress and influx tolerance mechanisms in plants to cope in saline environments. Biology, 11(4): 597. https://doi.org/10.3390/biology11040597
]Search in Google Scholar
[
Haider, M.Z., Ashraf, M.A., Rasheed, R., Hussain, I., Riaz, M., Qureshi, F.F., Iqbal, M. & Hafeez, A. 2023. Impact of salinity stress on medicinal plants. In: A. Husen & M. Iqbal, eds. Medicinal plants: their response to abiotic stress. pp. 199-239. Singapore, Springer Nature. https://doi.org/10.1007/978-981-19-5611-9_8
]Search in Google Scholar
[
Hajiboland, R., Cheraghvareh, L. & Poschenrieder, C. 2017. Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by silicon. Journal of Plant Nutrition, 40(12): 1661-1676. https://doi.org/10.1080/01904167.2017.1310887
]Search in Google Scholar
[
Halitim A. 1988. Sols des régions arides d’Algérie [Soils of the arid regions of Algeria]. p. 384. OPU, Algiers, Algeria.
]Search in Google Scholar
[
Kheloufi, A. & Mansouri, L.M. 2019. Anatomical changes induced by salinity stress in root and stem of two acacia species (A. karroo and A. saligna). Agriculture and Forestry, 65(4): 137-150. https://doi.org/10.17707/AgricultForest.65.4.12
]Search in Google Scholar
[
Kheloufi, A., Mansouri, L.M., Mami, A. & Djelilate, M. 2019. Physio-biochemical characterization of two acacia species (A. karroo Hayn and A. saligna Labill.) under saline conditions. Reforesta, 7: 33-49. https://doi.org/10.21750/REFOR.7.04.66
]Search in Google Scholar
[
Kheloufi, A., Mansouri, L.M. & Meradsi, F. 2023. Effect of salinity on the germination of three species of the Acacia genus (A. karroo, A. saligna and A. tortilis). Acta Universitatis Sapientiae Agriculture and Environment, 15: 52-65. https://doi.org/10.2478/ausae-2023-0005
]Search in Google Scholar
[
Mansouri, L.M., Heleili, N., Boukhatem, Z.F. & Kheloufi, A. 2019. Seed germination and radicle establishment related to type and level of salt in common bean (Phaseolus vulgaris L. var. Djedida). Cercetări Agronomice în Moldova, 52(3): 262-277. https://doi.org/10.46909/cerce-2019-0026
]Search in Google Scholar
[
Mansouri, L.M. & Kheloufi, A. 2024. Salinity effects on germination of Portulaca oleracea L.: A multipurpose halophyte from arid rangelands. Journal of Applied Research on Medicinal and Aromatic Plants, 41: 100549. https://doi.org/10.1016/j.jarmap.2024.100549
]Search in Google Scholar
[
McGaughey, S.A., Qiu, J., Tyerman, S.D. & Byrt, C.S. 2018. Regulating root aquaporin function in response to changes in salinity. Annual Plant Reviews Online, 1(2): 381-416. https://doi.org/10.1002/9781119312994.apr0626
]Search in Google Scholar
[
Mehmood, F., Ubaid, Z., Shahzadi, I., Ahmed, I., Waheed, M.T., Poczai, P. & Mirza, B. 2020. Plastid genomics of Nicotiana (Solanaceae): insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica). PeerJ, 8: e9552. https://doi.org/10.7717/peerj.9552
]Search in Google Scholar
[
Nejatzadeh-Barandozi, F. 2018. Data on seed priming and seedling growth of Barli 21 tobacco varieties under polyethylene glycol and salinity stress conditions. Data in Brief, 20: 454-458. https://doi.org/10.1016/j.dib.2018.08.033
]Search in Google Scholar
[
Orchard, T. 1977. Estimating the parameters of plant seedling emergence. Seed Science and Technology, 5(1): 61-69.
]Search in Google Scholar
[
Rashed, S.H. 2020. Effect of mole drain spacing, some soil amendments and boron fertilization on improving some soil properties and sugar beet productivity in salt-affected soils. Journal of Soil Sciences and Agricultural Engineering, 11(7): 341-347. https://doi.org/10.21608/jssae.2020.109701
]Search in Google Scholar
[
Reed, R.C., Bradford, K.J. & Khanday, I. 2022. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity, 128(6): 450-459. https://doi.org/10.1038/s41437-022-00497-2
]Search in Google Scholar
[
SAS. 2002. Statistical Analysis System: Version 9.0. SAS Institute Inc., Cary.
]Search in Google Scholar
[
Shin, S., Aziz, D., El-sayed, M.E.A., Hazman, M., Almas, L., McFarland, M., El Din, A.S. & Burian, S.J. 2022. Systems thinking for planning sustainable desert agriculture systems with saline groundwater irrigation: a review. Water, 14(20): 3343. https://doi.org/10.3390/w14203343
]Search in Google Scholar
[
Singh, M., Nara, U., Kumar, A., Choudhary, A., Singh, H. & Thapa, S. 2021. Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology, 19(1): 173. https://doi.org/10.1186/s43141-021-00274-4
]Search in Google Scholar
[
Soni, P.G., Basak, N., Rai, A.K., Sundha, P., Chandra, P. & Yadav, R.K. 2023. Occurrence of salinity and drought stresses: status, impact, and management. In: A. Kumar, P. Dhansu & A. Mann, eds. Salinity and drought tolerance in plants. pp. 1-28. Singapore, Springer Nature. https://doi.org/10.1007/978-981-99-4669-3_1
]Search in Google Scholar
[
Srivastava, P., Wu, Q.S. & Giri, B. 2019. Salinity: an overview. In: B. Giri & A. Varma, eds. Microorganisms in Saline Environments: Strategies and Functions. Soil Biology Series, Vol. 56. pp. 3-18. Switzerland, Springer Nature. https://doi.org/10.1007/978-3-030-18975-4_1
]Search in Google Scholar
[
Tlahig, S., Bellani, L., Karmous, I., Barbieri, F., Loumerem, M. & Muccifora, S. 2021. Response to salinity in legume species: An insight on the effects of salt stress during seed germination and seedling growth. Chemistry & Biodiversity, 18(4): e2000917. https://doi.org/10.1002/cbdv.202000917
]Search in Google Scholar
[
Trușcă, M., Gâdea, Ș., Vidican, R., Stoian, V., Vâtcă, A., Balint, C., Stoian, V.A., Horvat, M. & Vâtcă, S. 2023. Exploring the research challenges and perspectives in ecophysiology of plants affected by salinity stress. Agriculture, 13(3): 734. https://doi.org/10.3390/agriculture13030734
]Search in Google Scholar
[
Uçarlı, C. 2020. Effects of salinity on seed germination and early seedling stage. In: S. Fahad, S. Saud, Y. Chen, C. Wu & D. Wang, eds. Abiotic Stress in Plants, pp. 1-27. InTechOpen, London. https://doi.org/10.5772/intechopen.93647
]Search in Google Scholar
[
Xu, Y., Zheng, X., Song, Y., Zhu, L., Yu, Z., Gan, L., Zhou, S., Liu, H., We, F. & Zhu, C. 2018. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum. Scientific Reports, 8(1): 8873. https://doi.org/10.1038/s41598-018-27274-8
]Search in Google Scholar
[
Yan, H., Jia, H., Chen, X., Hao, L., An, H. & Guo, X. 2014. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant and Cell Physiology, 55(12): 2060-2076. https://doi.org/10.1093/pcp/pcu133
]Search in Google Scholar
[
Zhang, X., Zhang, Y., Li, M., Jia, H., Wei, F., Xia, Z., Zhang, X., Chang, J. & Wang, Z. 2024. Overexpression of the WRKY transcription factor gene NtWRKY65 enhances salt tolerance in tobacco (Nicotiana tabacum). BMC Plant Biology, 24(1): 326. https://doi.org/10.1186/s12870-024-04966-0
]Search in Google Scholar
[
Zou, X., BK, A., Abu-Izneid, T., Aziz, A., Devnath, P., Rauf, A., Mitra, S., Emran, T.B., Mujawah, A.A.H., Lorenzo, J.M., Mubarak, M.S., Wilairatana, P. & Suleria, H.A.R. 2021. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: A review. Biomedicine & Pharmacotherapy, 143: 112191. https://doi.org/10.1016/j.biopha.2021.112191
]Search in Google Scholar