Cite

Pellicci DG, Koay HF, Berzins SP. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol. 2020;20(12):756-70. Search in Google Scholar

Zarobkiewicz MK, Morawska I, Michalski A, Roliński J, Bojarska-Junak A. NKT and NKT-like cells in autoimmune neuroinflammatory diseases – Multiple sclerosis, myasthenia Gravis and Guillain-Barre syndrome. Int J Mol Sci. 2021;22(17):9520. Search in Google Scholar

Zarobkiewicz MK, Bojarska-Junak AA. The Mysterious Actor – γδ T Lymphocytes in Chronic Lymphocytic Leukaemia (CLL). Cells. 2022;11(4):661. Search in Google Scholar

Bojarska-Junak A, Tabarkiewicz J, Roliński J. NKT cells: their development, mechanisms and effects of action. Postepy Hig Med Doswiadczalnej Online. 2013;67:65-78. Search in Google Scholar

Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol. 2020;17(9):925-39. Search in Google Scholar

Hannani D, Ma Y, Yamazaki T, Déchanet-Merville J, Kroemer G, Zitvogel L. Harnessing γδ T cells in anticancer immunotherapy. Trends Immunol. 2012;33(5):199-206. Search in Google Scholar

Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med. 2018;16(1):3. Search in Google Scholar

Kondo M, Izumi T, Fujieda N, Kondo A, Morishita T, Matsushita H, et al. Expansion of human peripheral blood γδ T cells using zoledronate. J Vis Exp JoVE. 2011;(55):3182. Search in Google Scholar

Clark BL, Thomas PG. A cell for the ages: Human γδ t cells across the lifespan. Int J Mol Sci. 2020;21(23):1-18. Search in Google Scholar

Khoo AL, Koenen HJPM, Chai LYA, Sweep FGGJ, Netea MG, van der Ven AJAM, et al. Seasonal variation in vitamin D3 levels is paralleled by changes in the peripheral blood human T cell compartment. PLOS ONE. 2012;7(1):e29250. Search in Google Scholar

Bernicke B, Engelbogen N, Klein K, Franzenburg J, Borzikowsky C, Peters C, et al. Analysis of the seasonal fluctuation of γδ T cells and its potential relation with vitamin D3. Cells. 2022;11(9):1460. Search in Google Scholar

Chen L, Cencioni MT, Angelini DF, Borsellino G, Battistini L, Brosnan CF. Transcriptional profiling of γδ T cells identifies a role for vitamin D in the immunoregulation of the Vγ9Vδ2 response to phosphate-containing ligands1. J Immunol. 2005;174(10):6144-52. Search in Google Scholar

Afoke AO, Eeg-Olofsson O, Hed J, Kjellman NIM, Lindblom B, Ludvigsson J. Seasonal variation and sex differences of circulating macrophages, immunoglobulins and lymphocytes in healthy school children. Scand J Immunol. 1993;37(2):209-15. Search in Google Scholar

Maes M, Stevens W, Scharpe S, et al. Seasonal variation in peripheral blood leukocyte subsets and in serum interleukin-6, and soluble interleukin-2 and-6 receptor concentrations in normal volunteers. Experientia. 1994;50(9):821-9. Search in Google Scholar

Horst RT, Jaeger M, van de Wijer L, van der Heijden, Janssen AMW, Smeekens SP, et al. Seasonal and nonseasonal longitudinal variation of immune function. J Immunol. 2021;207(2):696-708. Search in Google Scholar

Mann DR, Akinbami MA, Gould KG, Ansari AA. Seasonal Variations in cytokine expression and cell-mediated immunity in male rhesus monkeys. Cell Immunol. 2000;200(2):105-15. Search in Google Scholar

Khoo AL, Chai LYA, Koenen HJPM, et al. 1,25-dihydroxyvitamin D3 modulates cytokine production induced by candida albicans: Impact of seasonal variation of immune responses. J Infect Dis. 2011; 203(1):122-30. Search in Google Scholar

Gruber-Bzura BM. Vitamin D and influenza – prevention or therapy? Int J Mol Sci. 2018;19(8):2419. Search in Google Scholar

Hartl C, Obermeier V, Gerdes LA, Brügel M, von Kries R, Kümpfel T. Seasonal variations of 25-OH vitamin D serum levels are associated with clinical disease activity in multiple sclerosis patients. J Neurol Sci. 2017;375:160-4. Search in Google Scholar

Cantorna MT. Why do T cells express the vitamin D receptor? Ann NY Acad Sci. 2011;1217(1):77-82. Search in Google Scholar

Thysen AH, Rasmussen MA, Kreiner-Møller E, Larsen JM, Folsgaard NV, Bonnelykke K, et al. Season of birth shapes neonatal immune function. J Allergy Clin Immunol. 2016;137(4):1238-46. Search in Google Scholar

Gałuszka-Bulaga A, Węglarczyk K, Latacz P, Jodłowska-Cicio K, Korkosz M, Pera J, et al. Seasonal Variations in the concentration of particulate matter in the air of cracow affect the magnitude of CD4+ T cell subsets cytokine production in patients with inflammatory and autoimmune disorders. Atmosphere. 2022;13(4):529. Search in Google Scholar

Williams L, Ulrich CM, Larson T, Wener MH, Wood B, Chen-Levy Z, et al. Fine Particulate Matter (PM2.5) Air pollution and immune status among women in the Seattle Area. Arch Environ Occup Health. 2011;66(3):155-65. Search in Google Scholar

Felix O. Omara MF Renaud Vincent, Barry R Blakley. Suppression of rat and mouse lymphocyte function by urban air particulates (Ottawa Dust) is reversed by n-acetylcysteine. J Toxicol Environ Health A. 2000;59(2):67-85. Search in Google Scholar

Vanham G, Van Baelen H, Tan BK, Bouillon R. The effect of vitamin D analogs and of vitamin D-binding protein on lymphocyte proliferation. J Steroid Biochem. 1988;29(4):381-6. Search in Google Scholar

Müller K, Bendtzen K. Inhibition of human t lymphocyte proliferation and cytokine production by 1,25-Dihydroxyvitamin D3. Differential effects on Cd45Ra+ and Cd45R0+ cells. Autoimmunity. 1993;14(1):37-43. Search in Google Scholar

Rigby WF, Stacy T, Fanger MW. Inhibition of T lymphocyte mitogenesis by 1,25-dihydroxyvitamin D3 (calcitriol). J Clin Invest. 1984;74(4):1451-5. Search in Google Scholar

eISSN:
2300-6676
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy