[
1. Grimm SA, Chamberlain MC. Anaplastic astrocytoma. CNS Oncol. 2016;5(3):145-57.10.2217/cns-2016-0002604263227230974
]Search in Google Scholar
[
2. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073-113.10.1093/neuonc/noaa106759455732328653
]Search in Google Scholar
[
3. Wick W, Hartmann C, Engel C, Stoffels M, Felsberg J, Stockhammer F, et al. NOA-04 randomized Phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol. 2009;27(35):5874-80.10.1200/JCO.2009.23.649719901110
]Search in Google Scholar
[
4. Saha D, Wakimoto H, Peters CW, Antoszczyk SJ, Rabkin SD, Martuza RL. Combinatorial effects of VEGFR kinase inhibitor axitinib and oncolytic virotherapy in mouse and human glioblastoma stem-like cell models. Clin Cancer Res. 2018;24(14):3409-22.10.1158/1078-0432.CCR-17-1717605008529599413
]Search in Google Scholar
[
5. Davis ME. Glioblastoma: Overview of disease and treatment. Clin J Oncol Nurs. 2016;20(5 Suppl):S2-8.10.1188/16.CJON.S1.2-8512381127668386
]Search in Google Scholar
[
6. Perry JR Laperriere N, O’Callaghan CJ, et al. Trial investigators short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027-37.10.1056/NEJMoa161197728296618
]Search in Google Scholar
[
7. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1985-96.10.1158/1055-9965.EPI-14-0275418500525053711
]Search in Google Scholar
[
8. Wang GW, Li BM. (2020). Efficacy of surgery for the treatment of astrocytoma: A protocol of systematic review and meta-analysis. Medicine. 2020;99(23).
]Search in Google Scholar
[
9. Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med. 1980;303:1323-9.10.1056/NEJM1980120430323037001230
]Search in Google Scholar
[
10. Chang CH, Horton J, Schoenfeld D, Salazer O, Perez Tamayo R, Kramer S, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer. 1983;52:997-1007.10.1002/1097-0142(19830915)52:6<997::AID-CNCR2820520612>3.0.CO;2-2
]Search in Google Scholar
[
11. EORTC Brain Tumor Group. Effect of CCNU on survival rate of objective remission and duration of free interval in patients with malignant brain glioma –final evaluation. E.O.R.T.C. Brain Tumor Group. Eur J Cancer. 1978;14:851-6.10.1016/0014-2964(78)90100-7
]Search in Google Scholar
[
12. EORTC Brain Tumor Group. Evaluation of CCNU, VM26 plus CCNU, and procarbazine in supratentorial brain gliomas. Final evaluation of a randomized study. European Organization for Research on Treatment of Cancer (EORTC) Brain Tumor Group. J Neurosurg. 1981;55:27-31.10.3171/jns.1981.55.1.00277017081
]Search in Google Scholar
[
13. Edwards MS, Levin VA, Wilson CB. Brain tumor chemotherapy: an evaluation of agents in current use for phase II and III trials. Cancer Treat Rep. 1980;64:1179-205.
]Search in Google Scholar
[
14. Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, et al. Major challenges and potential microenvironment-targeted therapies in glioblastoma. Int J Mol Sci. 2017;18(12):2732.10.3390/ijms18122732575133329258180
]Search in Google Scholar
[
15. Wang N, Jain RK, Batchelor TT. New directions in anti-angiogenic therapy for glioblastoma. Neurotherapeutics. 2017;14(2):321-32.10.1007/s13311-016-0510-y539898528083806
]Search in Google Scholar
[
16. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709-22.10.1056/NEJMoa130834524552318
]Search in Google Scholar
[
17. Wick W, Cloughesy TF, Nishikawa R, Mason W, Saran F, Henrikson R, et al. Tumor response based on adapted Macdonald criteria and assessment of pseudoprogression (PsPD) in the phase III AVAglio trial of bevacizumab (Bv) plus temozolomide (T) plus radiotherapy (RT) in newly diagnosed glioblastoma (GBM). J Clin Oncol. 2013;31(15).10.1200/jco.2013.31.15_suppl.2002
]Search in Google Scholar
[
18. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699-708.10.1056/NEJMoa1308573420104324552317
]Search in Google Scholar
[
19. Bayer Healthcare Pharmaceuticals Inc. Regorafenib (Stivarga). U.S Food and Drug Administration Prescribing Information; 2019.
]Search in Google Scholar
[
20. Bayer AG. Regorafenib (Stivarga). Summary of product characteristics. European Medicines Agency; 2018.
]Search in Google Scholar
[
21. Thomas AA, Omuro A. Current role of anti-angiogenic strategies for glioblastoma. Curr Treat Options Oncol. 2014;15:551-66.10.1007/s11864-014-0308-225173555
]Search in Google Scholar
[
22. Huang WJ, Chen WW, Zhang X. Glioblastoma multiforme: effect of hypoxia and hypoxia inducible factors on therapeutic approaches. Oncol Lett. 2016;12 (2016):2283-8.10.3892/ol.2016.4952503835327698790
]Search in Google Scholar
[
23. Lombardi G, De Salvo GL, Brandes AA, Eoli M, Ruda R, Faedi M, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019;20:110-9.10.1016/S1470-2045(18)30675-230522967
]Search in Google Scholar
[
24. Alexander BM, Ba S, Berger MS, Berry DA, Cavenee WK, Chang SM, et al. GBM AGILE Network. Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE. Clin Cancer Res. 2018;24(4):737-43.10.1158/1078-0432.CCR-17-076428814435
]Search in Google Scholar
[
25. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481-98.10.1056/NEJMoa1402121453001126061751
]Search in Google Scholar
[
26. Vizcaíno MA, Shah S, Eberhart CG, Rodriguez FJ. Clinicopathologic implications of NF1 gene alterations in diffuse gliomas. Hum Pathol. 2015;46(9):1323-30.10.1016/j.humpath.2015.05.014470309526190195
]Search in Google Scholar
[
27. Gao M, Yang J, Gong H, Lin Y, Liu J. Trametinib Inhibits the Growth and Aerobic Glycolysis of Glioma Cells by Targeting the PKM2/c-Myc Axis. Front Pharmacol. 2021;12:760055.10.3389/fphar.2021.760055856643634744739
]Search in Google Scholar
[
28. Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos FYFL, von Bubnoff N. Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022;23(1):53-64.10.1016/S1470-2045(21)00578-734838156
]Search in Google Scholar
[
29. Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011-22.10.1016/S1470-2045(19)30277-3662820231151904
]Search in Google Scholar
[
30. Schreck KC, Allen AN, Wang J, Pratilas CA. Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neurooncol Adv. 2020;2(1):138.10.1093/noajnl/vdaa138766844633235998
]Search in Google Scholar
[
31. Maxwell MJ, Arnold A, Sweeney H, Chen L, Lih TM, Schnaubelt M et al. Unbiased proteomic and phosphoproteomic analysis identifies response signatures and novel susceptibilities after combined MEK and mTOR inhibition in BRAFV600E mutant glioma. Mol Cell Proteomics. 2021;20:10023.10.1016/j.mcpro.2021.100123836384034298159
]Search in Google Scholar
[
32. Arnold A, Yuan M, Price A, Harris L, Eberhart CG, Raabe EH. Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity. Neuro Oncol. 2020;22(4):563-74.10.1093/neuonc/noz230715865531841591
]Search in Google Scholar
[
33. Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011-22.10.1016/S1470-2045(19)30277-3
]Search in Google Scholar
[
34. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib for children with plexiform neurofibromas. Lancet Oncol. 2020;18(2):e69-42.10.1016/S1470-2045(17)30009-828089105
]Search in Google Scholar
[
35. Burger MC, Ronellenfitsch MW, Lorenz NI, Wagner M, Voss M, Capper D, et al. Dabrafenib in patients with recurrent, BRAF V600E mutated malignant glioma and leptomeningeal disease. Oncol Rep. 2017;38(6):3291-6.10.1093/neuonc/nox168.877
]Search in Google Scholar
[
36. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694-703.10.1056/NEJMoa1210093354929523020132
]Search in Google Scholar
[
37. Grossauer S, Koeck K, Murphy NE, Meyers ID, Daynac M, Truffaux N, et al. Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model. Oncotarget. 2016;7(46):75839-53.10.18632/oncotarget.12419534278227713119
]Search in Google Scholar
[
38. Di Stefano AL, Fucci A, Frattini V, Labussiere M, Mokhtari K, Zoppoli P, et al. Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma. Clin Cancer Res. 2015;21(14):3307-17.10.1158/1078-0432.CCR-14-2199450621825609060
]Search in Google Scholar
[
39. Lassman AB, Sepúlveda-Sánchez JM, Cloughesy TF, Gil-Gil MJ, Puduvalli VK, Raizer JJ, et al. Infigratinib in patients with recurrent gliomas and FGFR alterations: A multicenter phase II study. Clin Cancer Res. 2022;28(11):2270-7.10.1158/1078-0432.CCR-21-2664916770235344029
]Search in Google Scholar
[
40. Lasorella A, Sanson M, Iavarone A. FGFR-TACC gene fusions in human glioma. Neuro Oncol. 2017;19(4):475-83.
]Search in Google Scholar
[
41. Torre M, Vasudevaraja V, Serrano J, DeLorenzo M, Malinowski S, Blandin AF, et al. Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol Commun. 2020;8(1):107.10.1186/s40478-020-00980-z736264632665022
]Search in Google Scholar
[
42. Solomon JP, Benayed R, Hechtman JF, Ladanyi M. Identifying patients with NTRK fusion cancer. Ann Oncol. 2019;30.10.1093/annonc/mdz384685981731738428
]Search in Google Scholar
[
43. Mayr L, Guntner AS, Madlener S, Schmook MT, Peyrl A, Azizi AA, et al. Cerebrospinal fluid penetration and combination therapy of entrectinib for disseminated ROS1/NTRK-fusion positive pediatric high-grade glioma. J Pers Med. 2020;10(4):290.10.3390/jpm10040290776648333353026
]Search in Google Scholar
[
44. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731-47.10.1038/s41571-018-0113-0641950630333516
]Search in Google Scholar
[
45. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271-82.10.1016/S1470-2045(19)30691-6746163031838007
]Search in Google Scholar
[
46. Doz F, van Tilburg CM, Geoerger B, Højgaard M, Øra I, Boni V, et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol. 2022;24(6):997-1007.10.1093/neuonc/noab274915944234850167
]Search in Google Scholar
[
47. Garcia-Foncillas J, Bokemeyer C, Italiano A, Keating K, Paracha N, Fellous M, et al. Indirect treatment comparison of larotrectinib versus entrectinib in treating patients with TRK gene fusion cancers. Cancers (Basel). 2022;14(7):1793.10.3390/cancers14071793899745735406565
]Search in Google Scholar
[
48. Bagchi A, Orr BA, Campagne O, Dhanda S, Nair S, Tran Q, et al. Lorlatinib in a child with ALK-fusion-positive high-grade glioma. N Engl J Med. 2021;385(8):761-3.10.1056/NEJMc2101264867268234407349
]Search in Google Scholar
[
49. Davare MA, Henderson JJ, Agarwal A, Wagner JP, Iyer SR, Shah N, et al. Rare but Recurrent ROS1 fusions resulting from chromosome 6q22 microdeletions are targetable oncogenes in glioma. Clin Cancer Res. 2018;24(24):6471-82.10.1158/1078-0432.CCR-18-1052629521430171048
]Search in Google Scholar
[
50. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18(12):1590-9.10.1016/S1470-2045(17)30680-0577723329074098
]Search in Google Scholar