This work is licensed under the Creative Commons Attribution 4.0 International License.
Akhtaruzzaman, M., Boubaker, S., Lucey, B. M., & Sensoy, A. (2021). Is Gold a Hedge or a Safe-Haven Asset in the COVID–19 Crisis? Economic Modelling, 102, 105588. https://doi.org/10.1016/j.econmod.2021.105588AkhtaruzzamanM.BoubakerS.LuceyB. M.SensoyA.2021Is Gold a Hedge or a Safe-Haven Asset in the COVID–19 Crisis?Economic Modelling102105588https://doi.org/10.1016/j.econmod.2021.105588Search in Google Scholar
Allard, A.-F., Iania, L., & Smedts, K. (2020). Stock-Bond Return Correlations: Moving Away from ‘One-Frequency-Fits-All’ by Extending the DCC-MIDAS Approach. International Review of Financial Analysis, 71, 101557. https://doi.org/10.1016/j.irfa.2020.101557AllardA.-F.IaniaL.SmedtsK.2020Stock-Bond Return Correlations: Moving Away from ‘One-Frequency-Fits-All’ by Extending the DCC-MIDAS ApproachInternational Review of Financial Analysis71101557https://doi.org/10.1016/j.irfa.2020.101557Search in Google Scholar
Bašta, M., & Molnár, P. (2018). Oil Market Volatility and Stock Market Volatility. Finance Research Letters, 26, 204–214. https://doi.org/10.1016/j.frl.2018.02.001BaštaM.MolnárP.2018Oil Market Volatility and Stock Market VolatilityFinance Research Letters26204214https://doi.org/10.1016/j.frl.2018.02.001Search in Google Scholar
Baur, D. G., & Lucey, B. M. (2010). Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold. Financial Review, 45(2), 217–229. https://doi.org/10.1111/j.1540-6288.2010.00244.xBaurD. G.LuceyB. M.2010Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and GoldFinancial Review452217229https://doi.org/10.1111/j.1540-6288.2010.00244.xSearch in Google Scholar
Będowska-Sójka, B., Demir, E., & Zaremba, A. (2022). Hedging Geopolitical Risks with Different Asset Classes: A Focus on the Russian Invasion of Ukraine. Finance Research Letters, 50(July). https://doi.org/10.1016/j.frl.2022.103192Będowska-SójkaB.DemirE.ZarembaA.2022Hedging Geopolitical Risks with Different Asset Classes: A Focus on the Russian Invasion of UkraineFinance Research Letters50Julyhttps://doi.org/10.1016/j.frl.2022.103192Search in Google Scholar
Bellu, M., & Conversano, C. (2020). Protected Adaptive Asset Allocation. Finance Research Letters, 32 (November 2018), 101095. https://doi.org/10.1016/j.frl.2019.01.007BelluM.ConversanoC.2020Protected Adaptive Asset AllocationFinance Research Letters32November2018101095https://doi.org/10.1016/j.frl.2019.01.007Search in Google Scholar
Bernhart, G., Höcht, S., Neugebauer, M., Neumann, M., & Zagst, R. (2011). Asset Correlations in Turbulent Markets and the Impact of Different Regimes on Asset Management. Asia-Pacific Journal of Operational Research, 28(1), 1–23. https://doi.org/10.1142/S0217595911003028BernhartG.HöchtS.NeugebauerM.NeumannM.ZagstR.2011Asset Correlations in Turbulent Markets and the Impact of Different Regimes on Asset ManagementAsia-Pacific Journal of Operational Research281123https://doi.org/10.1142/S0217595911003028Search in Google Scholar
Bianchi, F., Nicolò, G., & Song, D. (2023). Inflation and Real Activity Over the Business Cycle. SSRN Electronic Journal, March 2023. https://doi.org/10.2139/ssrn.4407484BianchiF.NicolòG.SongD.2023Inflation and Real Activity Over the Business CycleSSRN Electronic JournalMarch2023https://doi.org/10.2139/ssrn.4407484Search in Google Scholar
Breusch, T. S., & Pagan, A. R. (1979). A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica, 47(5), 1287–1294. https://doi.org/10.2307/1911963BreuschT. S.PaganA. R.1979A Simple Test for Heteroscedasticity and Random Coefficient VariationEconometrica47512871294https://doi.org/10.2307/1911963Search in Google Scholar
Carlini, F., Cucinelli, D., Previtali, D., & Soana, M. G. (2020). Don’t Talk Too Bad! Stock Market Reactions to Bank Corporate Governance News. Journal of Banking & Finance, 121(C), 105962. https://doi.org/10.1016/j.jbankfin.2020.105962CarliniF.CucinelliD.PrevitaliD.SoanaM. G.2020Don’t Talk Too Bad! Stock Market Reactions to Bank Corporate Governance NewsJournal of Banking & Finance121C105962https://doi.org/10.1016/j.jbankfin.2020.105962Search in Google Scholar
Durbin, J., & Watson, G. S. (1971). Testing for Serial Correlation in Least Squares Regression. III. Biometrika, 58(1), 1–19. https://doi.org/10.2307/2334313DurbinJ.WatsonG. S.1971Testing for Serial Correlation in Least Squares Regression. IIIBiometrika581119https://doi.org/10.2307/2334313Search in Google Scholar
Dutta, A., Bouri, E., & Noor, M. H. (2021). Climate Bond, Stock, Gold, and Oil Markets: Dynamic Correlations and Hedging Analyses During the COVID-19 Outbreak. Resources Policy, 74(2021), 102265. https://doi.org/10.1016/j.resourpol.2021.102265DuttaA.BouriE.NoorM. H.2021Climate Bond, Stock, Gold, and Oil Markets: Dynamic Correlations and Hedging Analyses During the COVID-19 OutbreakResources Policy742021102265https://doi.org/10.1016/j.resourpol.2021.102265Search in Google Scholar
Galariotis, E. C., Krokida, S.-I., & Spyrou, S. I. (2016). Herd Behaviour and Equity Market Liquidity: Evidence from Major Markets. International Review of Financial Analysis, 48(2016), 140–149. https://doi.org/10.1016/j.irfa.2016.09.013GalariotisE. C.KrokidaS.-I.SpyrouS. I.2016Herd Behaviour and Equity Market Liquidity: Evidence from Major MarketsInternational Review of Financial Analysis482016140149https://doi.org/10.1016/j.irfa.2016.09.013Search in Google Scholar
Guirguis, H., Dutra, V. B., & McGreevy, Z. (2022). The Impact of Global Economies on US Inflation: A Test of the Phillips Curve. Journal of Economics and Finance, 46(3), 575–592. https://doi.org/10.1007/s12197-022-09583-xGuirguisH.DutraV. B.McGreevyZ.2022The Impact of Global Economies on US Inflation: A Test of the Phillips CurveJournal of Economics and Finance463575592https://doi.org/10.1007/s12197-022-09583-xSearch in Google Scholar
Huang, T.-C., & Wang, K.-Y. (2017). Investors’ Fear and Herding Behaviour: Evidence from the Taiwan Stock Market. Emerging Markets Finance and Trade, 53(10), 2259–2278. https://doi.org/10.1080/1540496X.2016.1258357HuangT.-C.WangK.-Y.2017Investors’ Fear and Herding Behaviour: Evidence from the Taiwan Stock MarketEmerging Markets Finance and Trade531022592278https://doi.org/10.1080/1540496X.2016.1258357Search in Google Scholar
Huitema, B., & Laraway, S. (2006). Encyclopedia of Measurement and Statistics, Edition: Autocorrelation. Encyclopedia of Measurement and Statistics. USA: SAGE Publications.HuitemaB.LarawayS.2006Encyclopedia of Measurement and Statistics, Edition: AutocorrelationEncyclopedia of Measurement and StatisticsUSASAGE PublicationsSearch in Google Scholar
İskenderoglu, Ö., & Akdag, S. (2020). Comparison of the Effect of VIX Fear Index on Stock Exchange Indices of Developed and Developing Countries: The G20 Case. South East European Journal of Economics and Business, 15(1), 105–121. https://doi.org/10.2478/jeb-2020-0009İskenderogluÖ.AkdagS.2020Comparison of the Effect of VIX Fear Index on Stock Exchange Indices of Developed and Developing Countries: The G20 CaseSouth East European Journal of Economics and Business151105121https://doi.org/10.2478/jeb-2020-0009Search in Google Scholar
Lewellen, J. (2002). Momentum and Autocorrelation in Stock Returns. The Review of Financial Studies, 15(2), 533–564. https://doi.org/10.1093/rfs/15.2.533LewellenJ.2002Momentum and Autocorrelation in Stock ReturnsThe Review of Financial Studies152533564https://doi.org/10.1093/rfs/15.2.533Search in Google Scholar
Liu, W. (2021). Gold Price Analysis and Prediction Based on Pearson Correlation Analysis. Proceedings of the 2021 1st International Conference on Control and Intelligent Robotics (pp. 358–361). https://doi.org/10.1145/3473714.3473777LiuW.2021Gold Price Analysis and Prediction Based on Pearson Correlation AnalysisProceedings of the 2021 1st International Conference on Control and Intelligent Robotics358361https://doi.org/10.1145/3473714.3473777Search in Google Scholar
Liu, Z., Liu, J., Zeng, Q., & Wu, L. (2022). VIX and Stock Market Volatility Predictability: A New Approach. Finance Research Letters, 48(C), 102887. https://doi.org/10.1016/j.frl.2022.102887LiuZ.LiuJ.ZengQ.WuL.2022VIX and Stock Market Volatility Predictability: A New ApproachFinance Research Letters48C102887https://doi.org/10.1016/j.frl.2022.102887Search in Google Scholar
Mbanga, C., Darrat, A. F., & Park, J. C. (2019). Investor Sentiment and Aggregate Stock Returns: The Role of Investor Attention. Review of Quantitative Finance and Accounting, 53(2), 397–428. https://doi.org/10.1007/s11156-018-0753-2MbangaC.DarratA. F.ParkJ. C.2019Investor Sentiment and Aggregate Stock Returns: The Role of Investor AttentionReview of Quantitative Finance and Accounting532397428https://doi.org/10.1007/s11156-018-0753-2Search in Google Scholar
McMillan, D. G. (2019). Cross-Asset Relations, Correlations and Economic Implications. Global Finance Journal, 41(C), 60–78. https://doi.org/10.1016/j.gfj.2019.02.003McMillanD. G.2019Cross-Asset Relations, Correlations and Economic ImplicationsGlobal Finance Journal41C6078https://doi.org/10.1016/j.gfj.2019.02.003Search in Google Scholar
Melkuev, D. (2014). Asset Return Correlations in Episodes of Systemic Crises (Master’s thesis, University of Waterloo). Retrieved from University of Waterloo website: https://core.ac.uk/download/pdf/144147638.pdfMelkuevD.2014Asset Return Correlations in Episodes of Systemic CrisesMaster’s thesis,University of WaterlooRetrieved from University of Waterloo website: https://core.ac.uk/download/pdf/144147638.pdfSearch in Google Scholar
Mensi, W., Sensoy, A., Vo, X. V., & Kang, S. H. (2022). Pricing Efficiency and Asymmetric Multifractality of Major Asset Classes Before and During COVID-19 Crisis. North American Journal of Economics and Finance, 62(July), 101773. https://doi.org/10.1016/j.najef.2022.101773MensiW.SensoyA.VoX. V.KangS. H.2022Pricing Efficiency and Asymmetric Multifractality of Major Asset Classes Before and During COVID-19 CrisisNorth American Journal of Economics and Finance62July101773https://doi.org/10.1016/j.najef.2022.101773Search in Google Scholar
Merlo, L. F. P. (2024). VIX Tail Risk Hedging and Predictor. SSRN Electronic Journal, January (2024), 1–20. https://doi.org/10.2139/ssrn.4697974MerloL. F. P.2024VIX Tail Risk Hedging and PredictorSSRN Electronic JournalJanuary2024120https://doi.org/10.2139/ssrn.4697974Search in Google Scholar
Molenaar, R., Senechal, E., Swinkels, L., & Wang, Z. (2023). Empirical Evidence on the Stock-Bond Correlation. SSRN Electronic Journal, February(2023), 1–20. https://doi.org/10.2139/ssrn.4514947MolenaarR.SenechalE.SwinkelsL.WangZ.2023Empirical Evidence on the Stock-Bond CorrelationSSRN Electronic JournalFebruary2023120https://doi.org/10.2139/ssrn.4514947Search in Google Scholar
Nystrup, P., Hansen, B. W., Olejasz Larsen, H., Madsen, H., & Lindström, E. (2017). Dynamic Allocation or Diversification: A Regime-Based Approach to Multiple Assets. Journal of Portfolio Management, 44(2), 62–73. https://doi.org/10.3905/jpm.2018.44.2.062NystrupP.HansenB. W.Olejasz LarsenH.MadsenH.LindströmE.2017Dynamic Allocation or Diversification: A Regime-Based Approach to Multiple AssetsJournal of Portfolio Management4426273https://doi.org/10.3905/jpm.2018.44.2.062Search in Google Scholar
Ozili, P. K. (2023). The Acceptable R-Square in Empirical Modelling for Social Science Research. In C. Saliya (Ed.), Social Research Methodology and Publishing Results: A Guide to Non-Native English Speakers (pp. 134–143). IGI Global. https://doi.org/10.4018/978-1-6684-6859-3.ch009OziliP. K.2023The Acceptable R-Square in Empirical Modelling for Social Science ResearchInSaliyaC.(Ed.),Social Research Methodology and Publishing Results: A Guide to Non-Native English Speakers134143IGI Globalhttps://doi.org/10.4018/978-1-6684-6859-3.ch009Search in Google Scholar
Paiardini, P. (2014). The Impact of Economic News on Bond Prices: Evidence from the MTS Platform. Journal of Banking & Finance, 49(C), 302–322. https://doi.org/10.1016/j.jbankfin.2014.08.007PaiardiniP.2014The Impact of Economic News on Bond Prices: Evidence from the MTS PlatformJournal of Banking & Finance49C302322https://doi.org/10.1016/j.jbankfin.2014.08.007Search in Google Scholar
Purwanto, A., & Sudargini, Y. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Analysis for Social and Management Research: A Literature Review. Journal of Industrial Engineering & Management Research, 2(4), 114–123.PurwantoA.SudarginiY.2021Partial Least Squares Structural Equation Modeling (PLS-SEM) Analysis for Social and Management Research: A Literature ReviewJournal of Industrial Engineering & Management Research24114123Search in Google Scholar
Sandoval, L., & Franca, I. D. P. (2012). Correlation of Financial Markets in Times of Crisis. Physica A: Statistical Mechanics and Its Applications, 391(1–2), 187–208. https://doi.org/10.1016/j.physa.2011.07.023SandovalL.FrancaI. D. P.2012Correlation of Financial Markets in Times of CrisisPhysica A: Statistical Mechanics and Its Applications3911–2187208https://doi.org/10.1016/j.physa.2011.07.023Search in Google Scholar
Satchell, S. E., & Hwang, S. (2016). Tracking Error: Ex Ante Versus Ex Post Measures. In S. Satchell (Ed.), Asset Management (pp. 54–62). Palgrave Macmillan. https://doi.org/10.1007/978-3-319-30794-7_4SatchellS. E.HwangS.2016Tracking Error: Ex Ante Versus Ex Post MeasuresInSatchellS.(Ed.),Asset Management5462Palgrave Macmillanhttps://doi.org/10.1007/978-3-319-30794-7_4Search in Google Scholar
Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.2307/2333709ShapiroS. S.WilkM. B.1965An Analysis of Variance Test for Normality (Complete Samples)Biometrika523–4591611https://doi.org/10.2307/2333709Search in Google Scholar
Skiera, B., Reiner, J., & Albers, S. (2021). Regression Analysis. In Handbook of Market Research (pp. 299–327). Springer. https://doi.org/10.1007/978-3-319-57413-4_17SkieraB.ReinerJ.AlbersS.2021Regression AnalysisInHandbook of Market Research299327Springerhttps://doi.org/10.1007/978-3-319-57413-4_17Search in Google Scholar
Sun, C. (2024). Factor Correlation and the Cross Section of Asset Returns: A Correlation-Robust Machine Learning Approach. Journal of Empirical Finance, 77(C), 101497. https://doi.org/10.1016/j.jempfin.2024.101497SunC.2024Factor Correlation and the Cross Section of Asset Returns: A Correlation-Robust Machine Learning ApproachJournal of Empirical Finance77C101497https://doi.org/10.1016/j.jempfin.2024.101497Search in Google Scholar
Tronzano, M. (2020). Safe-Haven Assets, Financial Crises, and Macroeconomic Variables: Evidence from the Last Two Decades (2000–2018). Journal of Risk and Financial Management, 13(3), 1–29. https://doi.org/10.3390/jrfm13030040TronzanoM.2020Safe-Haven Assets, Financial Crises, and Macroeconomic Variables: Evidence from the Last Two Decades (2000–2018)Journal of Risk and Financial Management133129https://doi.org/10.3390/jrfm13030040Search in Google Scholar
Valadkhani, A. (2023). Asymmetric Downside Risk Across Different Sectors of the US Equity Market. Global Finance Journal, 57(May), 100844. https://doi.org/10.1016/j.gfj.2023.100844ValadkhaniA.2023Asymmetric Downside Risk Across Different Sectors of the US Equity MarketGlobal Finance Journal57May100844https://doi.org/10.1016/j.gfj.2023.100844Search in Google Scholar
Vuong, G. T. H., Nguyen, M. H., & Wong, W. K. (2022). CBOE Volatility Index (VIX) and Corporate Market Leverage. Cogent Economics and Finance, 10(1), 1–22. https://doi.org/10.1080/23322039.2022.2111798VuongG. T. H.NguyenM. H.WongW. K.2022CBOE Volatility Index (VIX) and Corporate Market LeverageCogent Economics and Finance101122https://doi.org/10.1080/23322039.2022.2111798Search in Google Scholar
Wang, H. (2019). VIX and Volatility Forecasting: A New Insight. Physica A: Statistical Mechanics and Its Applications, 533(C), 121951. https://doi.org/10.1016/j.physa.2019.121951WangH.2019VIX and Volatility Forecasting: A New InsightPhysica A: Statistical Mechanics and Its Applications533C121951https://doi.org/10.1016/j.physa.2019.121951Search in Google Scholar
Wang, X., Li, J., Ren, X., Bu, R., & Jawadi, F. (2023). Economic Policy Uncertainty and Dynamic Correlations in Energy Markets: Assessment and Solutions. Energy Economics, 117(C), 106475. https://doi.org/10.1016/j.eneco.2022.106475WangX.LiJ.RenX.BuR.JawadiF.2023Economic Policy Uncertainty and Dynamic Correlations in Energy Markets: Assessment and SolutionsEnergy Economics117C106475https://doi.org/10.1016/j.eneco.2022.106475Search in Google Scholar
Witz, K. (1990). [Review of Applied Statistics for the Behavioral Sciences, by D. E. Hinkle, W. Wiersma, & S. G. Jurs]. Journal of Educational Statistics, 15(1), 84–87. https://doi.org/10.2307/1164825WitzK.1990[Review of Applied Statistics for the Behavioral Sciences, by D. E. Hinkle, W. Wiersma, & S. G. Jurs]Journal of Educational Statistics1518487https://doi.org/10.2307/1164825Search in Google Scholar