Open Access

Analysis of Shear Wave Velocity Measurements Using SCPT

  
Jun 16, 2025

Cite
Download Cover

LUNNE, T. – POWELL, J. J. – ROBERTSON, P. K.: Cone penetration testing in geotechnical practice. CRC Press, 2002. DOI: 10.1201/9781482295047. Search in Google Scholar

ROBERTSON, P. K. – CAMPANELLA, R. G. – GILLESPIE, D. – RICE, A.: Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering, 112(8), 1986, pp. 791-803. DOI: 10.1061/(ASCE)0733-9410(1986)112:8(791). Search in Google Scholar

NASH, D. – SUKOLRAT, J. – GREENING, P. – BENAHMED, N.: Comparison of shear wave velocity measurements in a soft clay specimen using time and frequency domain techniques. Riv Ital Di Geotec, 25, 2007, pp. 56-68. Search in Google Scholar

PANUŠKA, J. – FRANKOVSKÁ, J.: Regression Analysis of Small Strain Shear and Constrained Modulus Measurements on Sands with Fines: Effect of Different Void Ratio Functions Used. Slovak Journal of Civil Engineering, 26(4), 2018, pp. 11-19. DOI: 10.2478/SJCE-2018-0023. Search in Google Scholar

CLAYTON, C. R. I.: Stiffness at small strain: research and practice. Géotechnique, 61(1), 2011, pp. 5-37. DOI: 10.1680/GEOT.2011.61.1.5 Search in Google Scholar

BULKO, R.: Analýza vplyvu parametrov vybraných konštitučných modelov zemín určovaných statickou penetráciou na presnosť numerických modelov (Analysis of the influence of parameters of selected soil constitutive models of soils determined by Cone Penetration on the accuracy of numerical models). Disertation thesis, 2016. Search in Google Scholar

GAGO, F.: Určovanie parametrov konštitučných modelov zemín in-situ testovaním (Determining parameters of constitutive models of soils by in-situ testing). Disertation thesis, 2020. Search in Google Scholar

ROBERTSON, P. K.: Interpretation of cone penetration tests—a unified approach. Canadian Geotechnical Journal, 46(11), 2009, pp. 1337-1355. DOI: 10.1139/T09-06. Search in Google Scholar

ANDRUS, R. D. – MOHANAN, N. P. – PIRATHEEPAN, P. – ELLIS, B. S. – HOLZER, T. L.: Predicting shear-wave velocity from cone penetration resistance. Proceedings of the 4th international conference on earthquake geotechnical engineering, Thessaloniki, Greece, Vol. 2528, 2007. Search in Google Scholar

HEGAZY, Y. A. – MAYNE, P. W.: A global statistical correlation between shear wave velocity and cone penetration data. Site and Geomaterial Characterization, 2006, pp. 243-248. DOI: 10.1061/40861(193)3. Search in Google Scholar

ILIESCU, A. I. – GERON, J.: Seismic Cone Penetration Test. Experimental results in onshore areas. Geotechnical Investigation. 2012. Search in Google Scholar

PANUŠKA, J. – FRANKOVSKÁ, J.: Effect of a void ratio on the small strain shear modulus Gmax for coarse-grained soils. Procedia Engineering, 161, 2016, pp. 1235-1239. DOI: 10.1016/J.PROENG.2016.08.554. Search in Google Scholar

SANTOS, R. S. – SAUVIN, G. – PARK, J. – VANNESTE, M.: Assessment of seismic cone penetration tests uncertainty: equipment set-up, processing, and interpretation workflows. SUT Offshore Site Investigation and Geotechnics, 2023. DOI:10.3723/IZTT5056. Search in Google Scholar

BOL, E.: A new approach to the correlation of SPT-CPT depending on the soil behavior type index. Engineering geology, 314, 2023, pp.106996. DOI: 10.1016/j.enggeo.2023.106996. Search in Google Scholar

BRIXOVÁ, B. – MOSNÁ, A. – PUTIŠKA, R.: Applications of shallow seismic refraction measurements in the Western Carpathians (Slovakia): case studies. Contributions to Geophysics and Geodesy, 48(1), 2018, pp. 1-21. Search in Google Scholar

PUTIŠKA, R. – MOJZEŠ, A. – BEDNARIK, M. – MATYS, M. – VYBÍRAL, V.: Geological models of landfills in Slovakia. Contributions to Geophysics and Geodesy, 35(4), 2005, pp. 429-439. Search in Google Scholar

DONOHUE, S. – GAVIN, K. – TOLOOIYAN, A.: Geophysical and geotechnical assessment of a railway embankment failure. Near Surface Geophysics, 9(1), 2011, pp. 33-44. DOI: 10.3997/1873-0604.2010040. Search in Google Scholar

VU, V. T.: Assessment of Slope Stability with the Assistance of Artificial Neural Network and Differential Evolution. Civil And Environmental Engineering, 19(1), 2023, pp. 288-300. DOI: 10.2478/cee-2023-0026. Search in Google Scholar

WAHEED, M. – ASMAEL, N.: Study immediate and consolidation settlement of shallow foundations. Civil And Environmental Engineering, 19, 2023, 318-327. DOI: 10.2478/cee-2023-0028. Search in Google Scholar