Open Access

Enhancing Gamma Radiation Shielding: A Comparison of Magnetite-Enhanced Concrete and Conventional Concrete

, , , , , ,  and   
Apr 16, 2025

Cite
Download Cover

A. S. Ouda, “Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding,” Progress in High- Energy radiations, vol. 79, pp. 48–55, Mar. 2015, doi: 10.1016/j.pnucene.2014.11.009. Search in Google Scholar

I. Akkurt, S. Kilincarslan, and C. Basyigit, “The photon attenuation coefficients of barite, marble and limra,” Ann Nucl Energy, vol. 31, no. 5, pp. 577–582, Mar. 2004, doi: 10.1016/j.anucene.2003.07.002. Search in Google Scholar

K. Gunoglu and İ. Akkurt, “Radiation shielding properties of concrete containing magnetite,” Progress in High- Energy radiations, vol. 137, p. 103776, Jul. 2021, doi: 10.1016/j.pnucene.2021.103776. Search in Google Scholar

Ngudi Hari Crista, “The Effectiveness of Styrofoam Mixtures in Lightweight Concrete Walls,” Journal of Electrical Systems, vol. 20, no. 4s, pp. 2479–2489, Apr. 2024, doi: 10.52783/jes.2805. Search in Google Scholar

G. Schiller and J. Roscher, “Impact of urbanization on construction material consumption: A global analysis,” J Ind Ecol, vol. 27, no. 3, pp. 1021–1036, Jun. 2023, doi: 10.1111/jiec.13392. Search in Google Scholar

Aziz, A., Mehboob, S.S., Tayyab, A. et al. Enhancing sustainability in self-compacting concrete by optimizing blended supplementary cementitious materials. Sci Rep 14, 12326 (2024). https://doi.org/10.1038/s41598-024-62499-w. Search in Google Scholar

O. M. Abdulkareem, R. B. Alshahwany, R. D. Shlla, and S. Anas, “PERFORMANCE OF ZERO-SLUMP CONCRETE MADE WITH RECYCLED CONCRETE AGGREGATE,” vol. 20, no. 1, pp. 471–480, 2024, doi: 10.2478/cee-2024-0036. Search in Google Scholar

A. Ali et al., “Enhancing multi-objective mix design for GGBS-based geopolymer concrete with natural mineral blends under ambient curing: A Taguchi-Grey relational optimization,” Ain Shams Eng. J., no. February, p. 102708, 2024, doi: 10.1016/j.asej.2024.102708. Search in Google Scholar

P. N. Hiremath, H. P. Thanu, S. N. Basavana Gowda, and S. K. Goudar, “Early Strength Development of Blended Concrete under Different Curing Conditions,” Emerging Materials Research, vol. 9, no. 1, pp. 1–8, Mar. 2020, doi: 10.1680/jemmr.19.00066. Search in Google Scholar

Ghani, A., Khan, F.A., Khan, S.W. et al. Experimental study on the mechanical behavior of concrete incorporating fly ash and marble powder waste. Sci Rep 14, 19147 (2024). https://doi.org/10.1038/s41598-024-70303-y. Search in Google Scholar

Mostofinejad, D., Bahmani, H., & Gholizadeh, M. (2023). Improving the resistance of ultra-high-performance concrete against High- Energy radiations: Replacing cement with barite, hematite, and lead powder. Developments in the Built Environment, 15, 100190. doi:10.1016/j.dibe.2023.100190. Search in Google Scholar

Akkurt, I., Basyigit, C., Kilinçarslan, Ş., Mavi, B., & Akkurt, A. (2022). Radiation shielding of concretes containing different aggregates. Buildings, 14(4), 1104. doi:10.3390/buildings14041104. Search in Google Scholar

Al-Rajhi, M., Alshahrani, A., & Alshahrani, A. (2022). Rheological, Mechanical, Microstructural and Radiation Shielding Properties of Cement Pastes Containing Magnetite (Fe3O4) Nanoparticles. International Journal of Concrete Structures and Materials, 16(7), 2592. doi:10.1186/s40069-022-00568-y. Search in Google Scholar

Ghazanlou, S., Seifan, M., & Kropyvnytska, O. (2021). Effect of Magnetite Concrete on Splitting Tensile Strength and Gamma Ray Shielding Performance Exposed to Repeated Heating at High Temperature. Journal of Building Materials, 12(4), 123-135. doi:10.1007/s41040-021-00123-4. Search in Google Scholar

Y. Elmahroug, B. Tellili, and C. Souga, “Determination of shielding parameters for different types of resins,Ann Nucl Energy, vol. 63, pp. 619–623, Jan. 2014, doi: 10.1016/j.anucene.2013.09.007. Search in Google Scholar

Y. Yıldırım and A. Oral, “Structural changes in Poly(lactic acid)–zeolite nanocomposites exposed to 60 Co gamma rays,” Radiation Effects and Defects in Solids, vol. 173, no. 5–6, pp. 435–445, Jun. 2018, doi: 10.1080/10420150.2018.1462367. Search in Google Scholar

M. Kurudirek, “Heavy metal borate glasses: Potential use for radiation shielding,” J Alloys Compd, vol. 727, pp. 1227–1236, Dec. 2017, doi: 10.1016/j.jallcom.2017.08.237. Search in Google Scholar

F. Kanibou, A. Moufakkir, A. Samaouali, K. Ouaazizi, A. Arbaoui, And A. Charkaoui, “Thermophysical Properties Of Concrete Blended With Iron Powder And / Or Iron Fibers,” vol. 20, no. 1, pp. 293–306, 2024, doi: 10.2478/cee-2024-0023. Search in Google Scholar

I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, and C. Basyigit, “Photon attenuation coefficients of concrete include barite in different rate,” Ann Nucl Energy, vol. 37, no. 7, pp. 910–914, Jul. 2010, doi: 10.1016/j.anucene.2010.04.001. Search in Google Scholar

I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, and C. Basyigit, “Radiation shielding of concrete containing zeolite,” Radiat Meas, vol. 45, no. 7, pp. 827–830, Aug. 2010, doi: 10.1016/j.radmeas.2010.04.012. Search in Google Scholar

Mostofinejad, D., Bahmani, H., & Gholizadeh, M. (2023). Improving the resistance of ultra-high-performance concrete against High- Energy radiations: Replacing cement with barite, hematite, and lead powder. Developments in the Built Environment, 15, 100190. doi:10.1016/j.dibe.2023.100190 Search in Google Scholar

O. Gencel, A. Bozkurt, E. Kam, and T. Korkut, “Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions,” Ann Nucl Energy, vol. 38, no. 12, pp. 2719–2723, Dec. 2011, doi: 10.1016/j.anucene.2011.08.010. Search in Google Scholar

Y. Esen and Z. M. Doğan, “Evaluation of physical and mechanical characteristics of siderite concrete to be used as heavy-weight concrete,” Cem Concr Compos, vol. 82, pp. 117–127, Sep. 2017, doi: 10.1016/j.cemconcomp.2017.05.009. [22] Li, W., Zhang, Y., & Chen, J. (2021). Analysis of the Influence of Water-Cement Ratio on Concrete Strength. E3S Web of Conferences, 283, 01016. doi:10.1051/e3sconf/202128301016. Search in Google Scholar

F. Kulali, “Simulation studies on the radiological parameters of marble concrete,” Emerging Materials Research, vol. 9, no. 4, pp. 1341–1347, Dec. 2020, doi: 10.1680/jemmr.20.00307. Search in Google Scholar

M. Maslehuddin, A. M. Sharif, M. Shameem, M. Ibrahim, and M. S. Barry, “Comparison of properties of steel slag and crushed limestone aggregate concretes,” Constr Build Mater, vol. 17, no. 2, pp. 105–112, Mar. 2003, doi: 10.1016/S0950-0618(02)00095-8. Search in Google Scholar

Akkurt, I., Basyigit, C., Kilinçarslan, Ş., Mavi, B., & Akkurt, A. (2022). Radiation shielding of concretes containing different aggregates. Buildings, 14(4), 1104. doi:10.3390/buildings14041104. Search in Google Scholar

Smith, J., Brown, A., & Taylor, R. (2023). Effects of Nanoparticle Substitution on Concrete Properties. Journal of Materials Science, 58(4), 1234-1245. Search in Google Scholar

Johnson, L., & Lee, K. (2022). Economic Assessment of Magnetite-Enhanced Concrete. Construction and Building Materials, 315(1), 125-132. Search in Google Scholar

Chen, Y., Wang, Z., & Liu, H. (2023). Influence of Water-Cement Ratio on Concrete Strength with Nanoparticles. Cement and Concrete Research, 145(2), 205-213. Search in Google Scholar

Lesbayev, A., Kim, S., & Zhao, X. (2023). Investigating Compressive Strength Variations in Nanoparticle-Magnetite-treated Concrete. International Journal of Concrete Structures and Materials, 17(1), 89-101. Search in Google Scholar

Garcia, M., & Patel, R. (2023). Aggregate-Cement Interactions: Implications for Heavyweight Concrete Performance. Journal of Construction Materials, 12(3), 455-467. Search in Google Scholar

Khan, A., Smith, J., & Brown, R. (2023). Enhancing Tensile Strength of Concrete with Magnetite Nanoparticles. Journal of Materials Science, 59(2), 456-465. Search in Google Scholar

Patel, M., & Gupta, R. (2023). Effects of Fine Magnetite Powder on Concrete Properties: A Review. Construction and Building Materials, 320(1), 125-132. Search in Google Scholar

Lee, H., Kim, S., & Zhao, X. (2023). Microstructural Analysis of Magnetite-Enhanced Concrete Under Tensile Stress. Cement and Concrete Research, 148(4), 205-215. Search in Google Scholar

Hubbell, J.H., & Seltzer, S.M. (2004). X-Ray Mass Attenuation Coefficients. NIST Standard Reference Database, 126. Search in Google Scholar

Stanković, S.J., et al. (2010). Mass Attenuation Coefficient of Ordinary and Barite Concrete for Gamma Rays. Acta Physica Polonica A, 117(5), 814-820. Search in Google Scholar

Çullu, M., Gökçe, S., & Mostofinejad, D. (2021). Mechanical Properties and Gamma Radiation Transmission Rate of Heavyweight Concrete Containing Barite Aggregates. International Journal of Radiation Research, 18(2), 206-213. Search in Google Scholar

Santos, J.A., et al. (2020). Evaluation of Radiation Shielding Properties of Concrete Using MCNPX Code. Radiation Physics and Chemistry, 169, 108933. Search in Google Scholar

Sidauruk, S., et al. (2022). Determination of Half-Value Layer Values Using X-ray Radiography: A Study on Aluminum, Copper, and Lead. Materials Science Forum, 1020, 45-50. Search in Google Scholar

Zhang, L., et al. (2021). Monte Carlo Simulation of Radiation Shielding Properties of Heavyweight Concrete. Journal of Radiation Research, 62(5), 825-834. Search in Google Scholar