Open Access

Analysis of Thermal Comfort in a Single-Family House in Poland


Cite

[1] FANGER, P. O.: Komfort cieplny. Arkady, 1974.Search in Google Scholar

[2] PN-EN ISO 7730: 2006 Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal Comfort criteria.Search in Google Scholar

[3] ASHRAE STANDARD 55 – 2004: Thermal Environmental Conditions for Human Occupancy.Search in Google Scholar

[4] PN-EN 16798-1:2019, Energy Performance of Buildings-Ventilation for Buildings-Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics.Search in Google Scholar

[5] KIIL, M. – SIMSON, R. – THALFELDT, M. – KURNITSKI, J.: A Comparative Study on Cooling Period Thermal Comfort Assessment in Modern Open Office Landscape in Estonia. Atmosphere, 11, 127, 2020.Search in Google Scholar

[6] MAJEWSKI, G. – TELEJKO, M. – ORMAN, Ł. J.: Analysis of thermal comfort in an intelligent building. Civil and Environmental Engineering, 13 (1), 2017, pp. 72-76.10.1515/cee-2017-0009Search in Google Scholar

[7] MAJEWSKI, G. – TELEJKO, M. – ORMAN, Ł. J.: Preliminary results of thermal comfort analysis in selected buildings. Proc. of Conf. on Interdisciplinatry Problems in Environmental Protection and Engineering (EKO-DOK), Poland, E3S Web of Conferences, 17, 00056, 2017.10.1051/e3sconf/20171700056Search in Google Scholar

[8] SIEW, C. C. - CHE-ANI, A. I. – TAWIL, N. M. - GOH-ABDULLAH, N. A. – UTABERTA, N.: Effectiveness of Thermal Comfort Models to Evaluate Occupants’ Satisfaction Levels in Office Buildings. Building and Environment (20), 2011, pp. 372-379.10.1016/j.proeng.2011.11.179Search in Google Scholar

[9] RICCIARDI, P. – BURATTI, C.: Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Building and Environment, 127, 2018,.pp. 23–36.10.1016/j.buildenv.2017.10.030Search in Google Scholar

[10] JAZIZADEH, F. – MARIN, F. M. - BECERIK-GERBER, B.: A thermal preference scale for personalized comfort profile identification via participatory sensing. Building and Environment, 68, 2013, pp. 1440-149.10.1016/j.buildenv.2013.06.011Search in Google Scholar

[11] JI, W. – CAO, B. – LUO, M. – ZHU, Y.: Influence of short-term thermal experience on thermal comfort evaluations: A climate chamber experiment. Building and Environment, 114, 2017, pp. 246-256.10.1016/j.buildenv.2016.12.021Search in Google Scholar

[12] HOMODA, R. Z. – SAHARIA, K. S. H. – ALMURIB, H. A. F. – NAGI, F. H.: RLF and TS fuzzy model identification of indoor thermal comfort based on PMV/PPD. Building and Environment, 49, 2012, pp. 141-153.10.1016/j.buildenv.2011.09.012Search in Google Scholar

[13] PIOTROWSKI, J. ZB. – ORMAN, Ł. J. – LUCAS, X. - ZENDER – ŚWIERCZ, E. – TELEJKO, M. – KORUBA, D.: Tests of thermal resistance of simulated walls with the reflective insulation. Proc. of Int. Conf. Experimental Fluid Mechanics 2013, Czech Republic, EPJ Web of Conferences, 67, 02095, 2014.10.1051/epjconf/20146702095Search in Google Scholar

[14] MAJEWSKI, G. – ORMAN, Ł. J. – TELEJKO, M. – RADEK, N. – PIETRASZEK, J. – DUDEK, A.: Assessment of thermal comfort in the intelligent buildings in view of providing high quality indoor environment. Energies, 13(8), 1973, 2020.10.3390/en13081973Search in Google Scholar

[15] https://comfort.cbe.berkeley.edu/EN.Search in Google Scholar

eISSN:
2199-6512
ISSN:
1336-5835
Language:
English