Open Access

Assessment of the Summer Thermal Stability of the Attic Room Using Two Different Software


Cite

[1] ČSN 73 0540-2. Thermal protection of buildings - Part 2: Requirements. ÚNMZ; 2011.Search in Google Scholar

[2] CHWIEDUK, D.: Impact of solar energy on the energy balance of attic rooms in high latitude countries. Applied Thermal Engineering, Vol. 136, 2018, pp. 548–559, https://doi.org/10.1016/j.applthermaleng.2018.03.011.10.1016/j.applthermaleng.2018.03.011Search in Google Scholar

[3] REILLY, A. - KINNANE, O.: The impact of thermal mass on building energy consumption. Applied Energy, Vol. 198, 2017, pp. 108–121, https://doi.org/10.1016/j.apenergy.2017.04.024.10.1016/j.apenergy.2017.04.024Search in Google Scholar

[4] ALDAWOUD, A.: Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate. Energy and Buildings, Vol. 59, 2013, pp. 104–110, https://doi.org/10.1016/j.enbuild.2012.12.031.10.1016/j.enbuild.2012.12.031Search in Google Scholar

[5] LONG, L. - YE, H. - ZHANG, H. - GAO, Y.: Performance demonstration and simulation of thermochromic double glazing in building applications. Solar Energy, Vol. 120, 2015, pp. 55–64, https://doi.org/10.1016/j.solener.2015.07.025.10.1016/j.solener.2015.07.025Search in Google Scholar

[6] OLIVIERI, L. - CAAMAÑO-MARTÍN, E. - MORALEJO-VÁZQUEZ, F. J. - MARTÍN-CHIVELET, N. - OLIVIERI, F. - NEILA-GONZALEZ, F. J.: Energy saving potential of semi-transparent photovoltaic elements for building integration. Energy, Vol. 76, 2014, pp. 572–583, https://doi.org/10.1016/j.energy.2014.08.054.10.1016/j.energy.2014.08.054Search in Google Scholar

[7] STEJSKALOVÁ, K. - OSTRÝ, M.: Influence of phase change materials on thermal stability in attic rooms. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Vol. 19, Iss. 6.2, 2019, pp. 183-189, https://doi.org/10.5593/sgem2019/6.2/S26.024.10.5593/sgem2019/6.2/S26.024Search in Google Scholar

[8] SAJJADIAN, S. M. - LEWIS, J. - SHARPLES, S.: The potential of phase change materials to reduce domestic cooling energy loads for current and future UK climates. Energy and Buildings, Vol. 93, 2015, pp. 83–89, https://doi.org/10.1016/j.enbuild.2015.02.029.10.1016/j.enbuild.2015.02.029Search in Google Scholar

[9] BEČKOVSKÝ, D. - OSTRÝ, M. - KALÁBOVÁ, T. - TICHOMIROV, V.: Thermal stability of attic spaces with integrated PCMs during the climatic year. Advanced Materials Research, Vol. 649, 2013, pp. 175–178, https://doi.org/10.4028/www.scientific.net/AMR.649.175.10.4028/www.scientific.net/AMR.649.175Search in Google Scholar

[10] AL-OBAIDI, K. M. - ISMAIL, M. - ABDUL RAHMAN, A. M.: Design and performance of a novel innovative roofing system for tropical landed houses. Energy Conversion and Management, Vol. 85, 2014, pp. 488–504, https://doi.org/10.1016/j.enconman.2014.05.101.10.1016/j.enconman.2014.05.101Search in Google Scholar

[11] PISELLO, A. L. - CASTALDO, V. L. - FABIANI, C. - COTANA, F.: Investigation on the effect of innovative cool tiles on local indoor thermal conditions: Finite element modeling and continuous monitoring. Building and Environment, Vol. 97, 2016, pp. 55–68, https://doi.org/10.1016/j.buildenv.2015.11.038.10.1016/j.buildenv.2015.11.038Search in Google Scholar

[12] AMORNLEETRAKUL, O. - PUANGSOMBUT, W. - HIRUNLABH, J.: Field investigation of the small house with the ventilated roof tiles. Advanced Materials Research, Vol. 931–932, 2014, pp. 1233–1237, https://doi.org/10.4028/www.scientific.net/AMR.931-932.1233.10.4028/www.scientific.net/AMR.931-932.1233Search in Google Scholar

[13] FERREIRA, M. - CORVACHO, H.: The effect of the use of radiant barriers in building roofs on summer comfort conditions – A case study. Energy and Buildings, Vol. 176, 2018, pp. 163–178, https://doi.org/10.1016/j.enbuild.2018.06.048.10.1016/j.enbuild.2018.06.048Search in Google Scholar

[14] LAPISA, R. - KARUDIN, A. - RIZAL, F. - KRISMADINATA - NASRUDDIN: Passive cooling strategies in roof design to improve the residential building thermal performance in tropical region. Asian Journal of Civil Engineering, Vol. 20, 2019, pp. 571–580, https://doi.org/10.1007/s42107-019-00125-1.10.1007/s42107-019-00125-1Search in Google Scholar

[15] NĚMEČEK, M. - KALOUSEK, M.: Quasistationary and dynamic simulation of summer overheating of passive timber house. Advanced Materials Research, Vol. 649, 2013, pp. 109–112, https://doi.org/10.4028/www.scientific.net/AMR.649.109.10.4028/www.scientific.net/AMR.649.109Search in Google Scholar

[16] MORÁVKOVÁ, N.: Výpočet letní tepelné stability místnosti klasickou metodou a s využitím dynamické simulace. Atelier-dek.cz, 2015, https://atelier-dek.cz/print/672.Search in Google Scholar

[17] CHOWDHURY, A. A. - RASUL, M. G. - KHAN, M. M. K.: Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate. Applied Energy, Vol. 85, Iss. 6, 2008, pp. 449–462, https://doi.org/10.1016/j.apenergy.2007.10.001.10.1016/j.apenergy.2007.10.001Search in Google Scholar

[18] ZHANG, A. - BOKEL, R. - van den DOBBELSTEEN, A. - SUN, Y. - HUANG, Q. - ZHANG, Q.: An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Building and Environment, Vol. 124, 2017, pp. 369-387, https://doi.org/10.1016/j.buildenv.2017.08.024.10.1016/j.buildenv.2017.08.024Search in Google Scholar

[19] STRACHAN, P. - SVEHLA, K. - HEUSLER, I. - KERSKEN, M.: Whole model empirical validation on a full-scale building. Journal of Building Performance Simulation, Vol. 9, Iss. 4, 2015, pp. 331-350, https://doi.org/10.1080/19401493.2015.1064480.10.1080/19401493.2015.1064480Search in Google Scholar

[20] SVOBODA, Z.: SIMULACE 2018. 1st edition, Praha: K-CAD spol. s r.o., 2018.Search in Google Scholar

[21] ČSN 73 0540-3. Thermal protection of buildings - Part 3: Design value quantities. ČNI, 2005.Search in Google Scholar

[22] ČSN 73 0540-4. Thermal protection of buildings - Part 4: Calculation methods. ČNI, 2005.Search in Google Scholar

[23] KLUBAL, T. - OSTRÝ, M.: Integration of PCMs and capillary radiant cooling/heating to ensure of thermal comfort. Advanced Materials Research, Vol. 1041, 2014, pp. 350–353, https://doi.org/10.4028/www.scientific.net/AMR.1041.350.10.4028/www.scientific.net/AMR.1041.350Search in Google Scholar

[24] SVOBODA, Z.: SIMULACE 2018. Version 2018.1 [software], http://kcad.cz/cz/uvod/.Search in Google Scholar

[25] DesignBuilder. Version 3.4.0.041 [software], https://designbuilder.co.uk/.Search in Google Scholar

[26] EN ISO 52016-1. Energy performance of buildings - Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads - Part 1: Calculation procedures. ÚNMZ, 2019.Search in Google Scholar

[27] EnergyPlus. Documentation, https://energyplus.net/documentation; 2019.Search in Google Scholar

[28] TUBO. METEO DATA, http://tubo.fce.vutbr.cz/new/meteoExport.asp; 2019.Search in Google Scholar

eISSN:
2199-6512
ISSN:
1336-5835
Language:
English