[Acker, A. (1980) Concerning Danjuk’s existence theorem for free-boundary-value problems with a Bernoulli condition. Proc. Amer. Math. Soc. 80, 451–454.]Search in Google Scholar
[Aguilera, N., Alt, H. W. and Cafarelli, L. A. (1986) An optimization problem with volume constraint. SIAM J. Control Optim. 24, 2, 191–198.]Search in Google Scholar
[Akhiezer, N.I. (1990) Elements of the Theory of Elliptic Functions. Translations of Mathematical Monographs 79. AMS, Providence, Rhode Island.]Search in Google Scholar
[Alt, H. W. and Cafarelli, L. A. (1981) Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144.]Search in Google Scholar
[Beurling, A. (1957) On free-boundary problems for the Laplace equation. Sem. on Analytic Functions 1, Inst. for Advanced Study, Princeton, 248–263.]Search in Google Scholar
[Bucur, D. and Trebesch, I. (1998) Shape optimization problems governed by nonlinear state equations. Proc. Roy. Soc. Edinburgh 128A 945-963.]Search in Google Scholar
[Cafarelli, L. A. and Spruck, J. (1982) Convexity properties of solutions to some classical variational problems. Comm. Partial Differential Equations ., 11, 1337–1379.]Search in Google Scholar
[Crank, J. (1984) Free and Moving Boundary Problems. Oxford University Press, Clarendon, Oxford.]Search in Google Scholar
[Daniljuk, I. I. (1972) On integral functionals with a variable domain of integration. Proc. Steklov Inst. Math. 118 and AMS (1976). ]Search in Google Scholar
[Dieudonné, J. (1960) Foundation of Modern Analysis. Academic Press, New York and London.]Search in Google Scholar
[Fasano, A. (1992) Some free boundary problems with industrial applications. In: G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich, eds., Shape Optimization and Free Boundaries, NATO ASI Series (C: Mathematical and Physical Sciences), 380, 113–142. Springer, Dordrecht]Search in Google Scholar
[Flucher, M. and Rumpf, M. (1997) Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486, 165–204.]Search in Google Scholar
[Golusin, G. M. (1969) Geometric Theory of Functions of a Complex Variable. Translations of Mathematical Monographs. AMS.]Search in Google Scholar
[Hamilton, R. S. (1982) The inverse function theorems of Nash and Moser. Bull. Amer. Math. Soc. ., 65–222.]Search in Google Scholar
[Haslinger, J., Kozubek, T., Kunisch, K. and Peichl, G. (2004) An embedding domain approach for a class of 2-d shape optimization problems: Mathematical analysis. J. Math. Anal. Appl. 290, 665–685.]Search in Google Scholar
[Henrot, A. and Onodera, M. (2021) Hyperbolic solutions to Bernoulli’s free boundary problem. Arch. Rat. Mech. Anal. 240, 761–784]Search in Google Scholar
[Landkof, N.S. (1972) Foundations of Modern Potential Theory, Springer-Verlag, Berlin.]Search in Google Scholar
[Šveràk, V. (1993) On optimal shape design. J. Math. Pures Appl., 72, 537–551]Search in Google Scholar
[Whittaker, E.T. and Watson, G.N. (1996) A Course of Modern Analysis. 4th edition. Cambridge University Press]Search in Google Scholar