1. bookVolume 22 (2022): Issue 4 (November 2022)
Journal Details
License
Format
Journal
eISSN
1314-4081
First Published
13 Mar 2012
Publication timeframe
4 times per year
Languages
English
Open Access

A Model-Free Cognitive Anti-Jamming Strategy Using Adversarial Learning Algorithm

Published Online: 10 Nov 2022
Volume & Issue: Volume 22 (2022) - Issue 4 (November 2022)
Page range: 56 - 72
Received: 31 Aug 2022
Accepted: 20 Oct 2022
Journal Details
License
Format
Journal
eISSN
1314-4081
First Published
13 Mar 2012
Publication timeframe
4 times per year
Languages
English

1. Alias, D. M. Cognitive Radio Networks: A Survey. – In: Proc. of International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET’16), IEEE, 2016, pp. 1981-1986. Search in Google Scholar

2. Saleem, Y., M. Husain Rehmani. Primary Radio User Activity Models for Cognitive Radio Networks: A Survey. – Journal of Network and Computer Applications, Vol. 43, 2014, pp. 1-16.10.1016/j.jnca.2014.04.001 Search in Google Scholar

3. Salahdine, F., N. Kaabouch. Security Threats, Detection, and Countermeasures for Physical Layer in Cognitive Radio Networks: A Survey. – Physical Communication, Vol. 39, 2020, 101001.10.1016/j.phycom.2020.101001 Search in Google Scholar

4. Hu, F., B. Chen, K. Zhu. Full Spectrum Sharing in Cognitive Radio Networks Toward 5G: A Survey. – IEEE Access, Vol. 6, 2018, pp. 15754-15776.10.1109/ACCESS.2018.2802450 Search in Google Scholar

5. Sudha, Y., V. Sarasvathi. An Intelligent Anti-Jamming Mechanism against Rule-Based Jammer in Cognitive Radio Network. – International Journal of Advanced Computer Science and Applications, Vol. 13, 2022, No 3.10.14569/IJACSA.2022.0130328 Search in Google Scholar

6. Bouabdellah, M., N. Kaabouch, F. El Bouanani, H. Ben-Azza. Network Layer Attacks and Countermeasures in Cognitive Radio Networks: A Survey. – Journal of Information Security and Applications, Vol. 38, 2018, pp. 40-49.10.1016/j.jisa.2017.11.010 Search in Google Scholar

7. Jasim, D. K., S. B. Sadkhan. Cognitive Radio Network: Security and Reliability Trade-off-Status, Challenges, and Future Trend. – In: Proc. of 1st Babylon International Conference on Information Technology and Science (BICITS’21), IEEE, 2021, pp. 149-153. Search in Google Scholar

8. Arjoune, Y., N. Kaabouch. A Comprehensive Survey on Spectrum Sensing in Cognitive Radio Networks: Recent Advances, New Challenges, and Future Research Directions. – Sensors, Vol. 19, 2019, No 1, 126.10.3390/s19010126633917430609719 Search in Google Scholar

9. Kaur, A., K. Kumar. A Comprehensive Survey on Machine Learning Approaches for Dynamic Spectrum Access in Cognitive Radio Networks. – Journal of Experimental & Theoretical Artificial Intelligence, Vol. 34, 2022, No 1, pp. 1-40.10.1080/0952813X.2020.1818291 Search in Google Scholar

10. Ganesh Babu, R., V. Amudha. A Survey on Artificial Intelligence Techniques in Cognitive Radio Networks. – In: Emerging Technologies in Data Mining and Information Security. Singapore, Springer, 2019, pp. 99-110.10.1007/978-981-13-1951-8_10 Search in Google Scholar

11. Wang, Y., Z. Ye, P. Wan, J. Zhao. A Survey of Dynamic Spectrum Allocation Based on Reinforcement Learning Algorithms in Cognitive Radio Networks. – Artificial Intelligence Review, Vol. 51, 2019, No 3, pp. 493-506.10.1007/s10462-018-9639-x Search in Google Scholar

12. Jia, L., F. Yao, Y. Sun, Y. Xu, S. Feng, A. Anpalagan. A Hierarchical Learning Solution for Anti-Jamming Stackelberg Game with Discrete Power Strategies. – IEEE Wirel. Commun. Lett., Vol. 6, 2017, No 6, pp. 818-821. DOI: doi:org/10.1109/lwc.2017.2747543. Open DOISearch in Google Scholar

13. Jia, L., Y. Xu, Y. Sun, S. Feng, A. Anpalagan. Stackelberg Game Approaches for Anti-Jamming Defence in Wireless Networks. – IEEE Wirel. Commun., Vol. 25, 2018, No 6, pp. 120-128.10.1109/MWC.2017.1700363 Search in Google Scholar

14. Xu, Y., et al. A One-Leader Multi-Follower Bayesian-Stackelberg Game for Anti-Jamming Transmission in UAV Communication Networks. – IEEE Access, Vol. 6, 2018, pp. 21697-21709.10.1109/ACCESS.2018.2828033 Search in Google Scholar

15. Jia, L., Y. Xu, Y. Sun, S. Feng, L. Yu, A. Anpalagan. A Multi-Domain Anti-Jamming Defense Scheme in Heterogeneous Wireless Networks. – IEEE Access, Vol. 6, 2018, pp. 40177-40188.10.1109/ACCESS.2018.2850879 Search in Google Scholar

16. Bhunia, S., E. Miles, S. Sengupta, F. Vazquez-Abad. CR-Honeynet: A Cognitive Radio Learning and Decoy-Based Sustenance Mechanism to Avoid Intelligent Jammer. – IEEE Trans. Cogn. Commun. Netw., Vol. 4, 2018, No 3, pp. 567-581.10.1109/TCCN.2018.2833549 Search in Google Scholar

17. Xu, Y., G. Ren, J. Chen, X. Zhang, L. Jia, L. Kong. Interference-Aware Cooperative Anti-Jamming Distributed Channel Selection in UAV Communication Networks. – Applied Sciences, Vol. 8, 2018, No 10, 1911.10.3390/app8101911 Search in Google Scholar

18. Yao, F., L. Jia. A Collaborative Multi-Agent Reinforcement Learning Anti-Jamming Algorithm in Wireless Networks. – IEEE Wireless Communications Letters, Vol. 8, 2019, No 4, pp. 1024-1027.10.1109/LWC.2019.2904486 Search in Google Scholar

19. Liu, S., Y. Xu, X. Chen, X. Wang, M. Wang, W. Li, Y. Li, Y. Xu. Pattern-Aware Intelligent Anti-Jamming Communication: A Sequential Deep Reinforcement Learning Approach. – IEEE Access, Vol. 7, 2019, pp. 169204-169216.10.1109/ACCESS.2019.2954531 Search in Google Scholar

20. Jia, L., Y. Xu, Y. Sun, S. Feng, L. Yu, A. Anpalagan. A Game-Theoretic Learning Approach for Anti-Jamming Dynamic Spectrum Access in Dense Wireless Networks. – IEEE Transactions on Vehicular Technology, Vol. 68, 2018, No 2, pp. 1646-1656.10.1109/TVT.2018.2889336 Search in Google Scholar

21. Feng, Z., G. Ren, J. Chen, C. Chen, X. Yang, Y. Luo, K. Xu. An Anti-Jamming Hierarchical Optimization Approach in Relay Communication System via Stackelberg Game. – Applied Sciences, Vol. 9, 2019, No 16, 3348.10.3390/app9163348 Search in Google Scholar

22. Feng, Z., G. Ren, J. Chen, X. Zhang, Y. Luo, M. Wang, Y. Xu. Power Control in Relay-Assisted Anti-Jamming Systems: A Bayesian Three-Layer Stackelberg Game Approach. – IEEE Access, Vol. 7, 2019, pp. 14623-14636.10.1109/ACCESS.2019.2893459 Search in Google Scholar

23. Li, Y., Y. Xu, X. Wang, W. Li, W. Bai. Power and Frequency Selection Optimization in Anti-Jamming Communication: A Deep Reinforcement Learning Approach. – In: Proc. of 5th IEEE International Conference on Computer and Communications (ICCC’19), IEEE, 2019, pp. 815-820. Search in Google Scholar

24. Cai, Y., K. Shi, F. Song, Y. Xu, X. Wang, H. Luan. Jamming Pattern Recognition Using Spectrum Waterfall: A Deep Learning Method. – In: Proc. of 5th IEEE International Conference on Computer and Communications (ICCC’19), IEEE, 2019, pp. 2113-2117. Search in Google Scholar

25. Liu, Q., W. Zhang. Deep Learning and Recognition of Radar Jamming Based on CNN. – In: Proc. of 12th International Symposium on Computational Intelligence and Design (ISCID’19), Vol. 1, IEEE, 2019, pp. 208-212.10.1109/ISCID.2019.00054 Search in Google Scholar

26. Xu, J., H. Lou, W. Zhang, G. Sang. An Intelligent Anti-Jamming Scheme for Cognitive Radio Based on Deep Reinforcement Learning. – IEEE Access, Vol. 8, 2020, pp. 202563-202572.10.1109/ACCESS.2020.3036027 Search in Google Scholar

27. Wang, Y., X. Liu, M. Wang, Y. Yu. A Hidden Anti-Jamming Method Based on Deep Reinforcement Learning. – arXiv preprint arXiv:2012.12448, 2020. Search in Google Scholar

28. Zhou, Q., Y. Li, Y. Niu. Intelligent Anti-Jamming Communication for Wireless Sensor Networks: A Multi-Agent Reinforcement Learning Approach. – IEEE Open Journal of the Communications Society, Vol. 2, 2021, pp. 775-784.10.1109/OJCOMS.2021.3056113 Search in Google Scholar

29. Nguyen, P. K. H., V. H. Nguyen. A Deep Double Q-Learning Based Scheme for Anti-Jamming Communications. – In: 2020 28th European Signal Processing Conference (EUSIPCO’21), IEEE, 2021, pp. 1566-1570.10.23919/Eusipco47968.2020.9287318 Search in Google Scholar

30. Dong, J., S. Wu, M. Sultani, V. Tarokh. Multi-Agent Adversarial Attacks for Multi-Channel Communications. – arXiv preprint arXiv:2201.09149, 2022. Search in Google Scholar

31. Sudha, Y., V. Sarasvathi. An Intelligent Anti-Jamming Mechanism against Rule-Based Jammer in Cognitive Radio Network. – International Journal of Advanced Computer Science and Applications, Vol. 13, 2022, No 3.10.14569/IJACSA.2022.0130328 Search in Google Scholar

32. Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra. Continuous Control with Deep Reinforcement Learning. – arXiv preprint arXiv:1509.02971, 2015. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo