Open Access

Special properties of transonic flows in a channel with a lenticular bump

,  and   
Jan 21, 2025

Cite
Download Cover

J. B. McDevitt, L. L. Levy Jr, and G. S. Deiwert, Transonic flow about a thick circular-arc airfoil, AIAA Journal, vol. 14, no. 5, pp. 606–613, 1976. Search in Google Scholar

H. Tijdeman and R. Seebass, Transonic flow past oscillating airfoils, Annual Review of Fluid Mechanics, vol. 12, no. 1, pp. 181–222, 1980. Search in Google Scholar

B. Rasuo, An experimental and theoretical study of transonic flow about the NACA 0012 airfoil, in 24th AIAA Applied Aerodynamics Conference, p. 3877, 2006. Search in Google Scholar

V. Hermes, I. Klioutchnikov, and H. Olivier, Numerical investigation of unsteady wave phenomena for transonic airfoil flow, Aerospace Science and Technology, vol. 25, no. 1, pp. 224–233, 2013. Search in Google Scholar

A. Jameson, Transonic flow calculations for aircraft, in Numerical Methods in Fluid Dynamics: Lectures given at the 3rd 1983 Session of the Centro Internationale Matematico Estivo (CIME) held at Como, Italy, July 7–15, 1983, pp. 156–242, Springer, 2006. Search in Google Scholar

R. Paciorri, A. Bonfiglioli, and A. Assonitis, Features of “fishtail” shock interaction in transonic flows on a NACA0012 profile, AIAA Journal, 2024. Search in Google Scholar

R. Paciorri, A. Bonfiglioli, and A. Assonitis, The transonic flow past a NACA0012 and the von Neumann paradox, in AIAA Aviation 2022 Forum, Paper no. 2022–3990, 2022. Search in Google Scholar

Shell Film Unit, High speed flight: Part 2 - transonic flight. YouTube, 1959. uploaded by National Aerospace Library. Search in Google Scholar

J. Von Neumann, Theory of shock waves, tech. rep., Institute for Advanced Study Princeton, NJ, 1943. also in: A. H. Taub (ed.), John von Neumann Collected Works, vol. VI: Theory of Games, Astrophysics, Hydrodynamics and Meteorology. Pergamon, 1963. Search in Google Scholar

A. H. Taub, ed., The Collected Works of John von Neumann: Volume VI: Theory of Games, Astrophysics, Hydrodynamics and Meteorology. Pergamon Press, 1963. Search in Google Scholar

C. J. Chapman, High speed flow. Cambridge University Press, 2000. Search in Google Scholar

G. Birkhoff, Hydrodynamics: A study in logic, fact, and similitude. Princeton University Press, 1950. Search in Google Scholar

P. Colella and L. F. Henderson, The von Neumann paradox for the diffraction of weak shock waves, Journal of Fluid Mechanics, vol. 213, pp. 71–94, 1990. Search in Google Scholar

A. R. Zakharian, M. Brio, J. K. Hunter, and G. M. Webb, The von Neumann paradox in weak shock reflection, Journal of Fluid Mechanics, vol. 422, pp. 193–205, 2000. Search in Google Scholar

K. G. Guderley, Considerations of the structure of mixed subsonic-supersonic flow patterns, Air Material Command Tech. Report, F-TR-2168-ND, ATI No. 22780, U.S. Wright-Patterson Air Force Base, GS-AAF-Wright Field 39, Dayton, Ohio, oct 1947. Search in Google Scholar

E. I. Vasilev, T. Elperin, and G. Ben-Dor, Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge, Physics of Fluids, vol. 20, no. 4, p. 046101, 2008. Search in Google Scholar

M. Ivanov, G. Shoev, D. Khotyanovsky, Y. Bondar, and A. Kudryavtsev, Supersonic patches in steady irregular reflection of weak shock waves, in 28th International Symposium on Shock Waves (K. Kontis, ed.), pp. 543–548, Berlin: Springer, 2012. Search in Google Scholar

S. Chakravarthy, O. Peroomian, U. Goldberg, and S. Palaniswamy, The CFD++ computational fluid dynamics software suite, in AIAA and SAE, 1998 World Aviation Conference, 1998. Search in Google Scholar

L. Campoli, A. Assonitis, M. Ciallella, R. Paciorri, A. Bonfiglioli, and M. Ricchiuto, UnDiFi-2D: an unstructured discontinuity fitting code for 2D grids, Computer Physics Communications, vol. 271, p. 108202, 2022. Search in Google Scholar

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, vol. I of Pure and Applied mathematics. New York: Interscience Publishers, fourth ed., 1963. Search in Google Scholar

G. Ben-Dor, Shock wave reflection phenomena. Springer Verlag, 2007. Search in Google Scholar

K. G. Guderley, Theory of Transonic Flow. Pergamon Press, 1962. Search in Google Scholar

G. T. Kalghatgi and B. L. Hunt, The three-shock confluence problem for normally impinging, overexpanded jets, Aeronautical Quarterly, vol. 26, no. 2, pp. 117–132, 1975. Search in Google Scholar

Ames Research Staff, Equations, tables, and charts for compressible flow, tech. rep., NASA Ames Research Centre, 1953. NACA Report 1135. Search in Google Scholar

H. Hornung, Regular and mach reflection of shock waves, Annual Review of Fluid Mechanics, vol. 18, no. 1, pp. 33–58, 1986. Search in Google Scholar

C. A. Mouton, Transition between Regular Reflection and Mach Reflection in the Dual-Solution Domain. PhD thesis, California Institute of Technology, Pasadena, California, USA, 2007. Search in Google Scholar

V. N. Uskov and M. V. Chernyshov, Special and extreme triple shock-wave configurations, Journal of Applied Mechanics and Technical Physics, vol. 47, pp. 492–504, 2006. Search in Google Scholar

U. Goldberg and Y. Allaneau, Contribution from metacomp technologies, inc. to the second high lift prediction workshop, in 52nd Aerospace Sciences Meeting, 2014. Search in Google Scholar

S. Chakravarthy, D. Chi, and U. Goldberg, Flow prediction around the saccon configuration using CFD++, in 28th AIAA Applied Aerodynamics Conference, 2010. Search in Google Scholar

R. Paciorri and A. Bonfiglioli, Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique, Journal of Computational Physics, vol. 230, no. 8, pp. 3155–3177, 2011. Search in Google Scholar

A. Bonfiglioli and R. Paciorri, Convergence analysis of shock-capturing and shock-fitting solutions on unstructured grids, AIAA Journal, vol. 52, no. 7, pp. 1404–1416, 2014. Search in Google Scholar

L. Campoli, P. Quemar, A. Bonfiglioli, and M. Ricchiuto, Shock-fitting and predictor-corrector explicit ale residual distribution, in Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti (M. Onofri and R. Paciorri, eds.), pp. 113–129, Cham: Springer International Publishing, 2017. Search in Google Scholar

A. Assonitis, R. Paciorri, and A. Bonfiglioli, Numerical simulation of shock/boundary-layer interaction using an unstructured shock-fitting technique, Computers & Fluids, vol. 228, p. 105058, 2021. Search in Google Scholar

R. Paciorri and A. Bonfiglioli, A shock-fitting technique for 2d unstructured grids, Computers & Fluids, vol. 38, no. 3, pp. 715–726, 2009. Search in Google Scholar

A. Bonfiglioli, R. Paciorri, and L. Campoli, Unsteady shock-fitting for unstructured grids, International Journal for Numerical Methods in Fluids, vol. 81, no. 4, pp. 245–261, 2016. Search in Google Scholar

M. S. Ivanov, A. Bonfiglioli, R. Paciorri, and F. Sabetta, Computation of weak steady shock reflections by means of an unstructured shock-fitting solver, Shock Waves, vol. 20, no. 4, pp. 271–284, 2010. Search in Google Scholar

W. H. Vandevender and K. H. Haskell, The SLATEC mathematical subroutine library, SIGNUM Newsl., vol. 17, pp. 16–21, sep 1982. Search in Google Scholar

R. Richter and P. Leyland, Auto-adaptive finite element meshes, in NASA Langley Research Center, ICASE/LaRC Workshop on Adaptive Grid Methods, pp. 219–232, 1995. Search in Google Scholar

P. J. Roache, Quantification of uncertainty in computational fluid dynamics, Annual Review of Fluid Mechanics, vol. 29, no. 1, pp. 123–160, 1997. Search in Google Scholar

M. H. Carpenter and J. H. Casper, Accuracy of shock capturing in two spatial dimensions, AIAA Journal, vol. 37, no. 9, pp. 1072–1079, 1999. Search in Google Scholar

A. Assonitis, R. Paciorri, M. Ciallella, M. Ricchiuto, and A. Bonfiglioli, Extrapolated shock fitting for two-dimensional flows on structured grids, AIAA Journal, vol. 60, no. 11, pp. 6301–6312, 2022. Search in Google Scholar

M. S. Ivanov, D. Vandromme, V. Fomin, A. Kudryavtsev, A. Hadjadj, and D. Khotyanovsky, Transition between regular and Mach reflection of shock waves: new numerical and experimental results, Shock Waves, vol. 11, no. 3, pp. 199–207, 2001. Search in Google Scholar

M. Ivanov, A. Kudryavtsev, S. Nikiforov, D. Khotyanovsky, and A. Pavlov, Experiments on shock wave reflection transition and hysteresis in low-noise wind tunnel, Physics of Fluids, vol. 15, no. 6, pp. 1807–1810, 2003. Search in Google Scholar

A. Hadjadj, A. Kudryavtsev, and M. Ivanov, Numerical investigation of shock-reflection phenomena in overexpanded supersonic jets, AIAA journal, vol. 42, no. 3, pp. 570–577, 2004. Search in Google Scholar

A. M. Tesdall, R. Sanders, and N. Popivanov, Further results on Guderley Mach reflection and the triple point paradox, Journal of Scientific Computing, vol. 64, no. 3, pp. 721–744, 2015. Search in Google Scholar

Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics