Open Access

Tempered fractional differential equations on hyperbolic space

 and   
Oct 12, 2024

Cite
Download Cover

M. S. Alrawashdeh, J. F. Kelly, M. M. Meerschaert, and H. P. Scheffler, Applications of inverse tempered stable subordinators, Computers & Mathematics with Applications, vol. 73, no. 6, pp. 892–905, 2017. Search in Google Scholar

L. Lao and E. Orsingher, Hyperbolic and fractional hyperbolic Brownian motion, Stochastics, vol. 79, no. 6, pp. 505–522, 2007. Search in Google Scholar

M. D’Ovidio, E. Orsingher, and B. Toaldo, Fractional telegraph-type equations and hyperbolic Brownian motion, Statistics & Probability Letters, vol. 89, pp. 131–137, 2014. Search in Google Scholar

E. D. Micheli, I. Scorza, and G. Viano, Hyperbolic geometrical optics: Hyperbolic glass, Journal of mathematical physics, vol. 47, no. 2, 2006. Search in Google Scholar

A. A. Kilbas, H. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations. Elsevier, 2006. Search in Google Scholar

R. Garra, F. Maltese, and E. Orsingher, A note on generalized fractional diffusion equations on Poincaré half plane, Fractional Differential Calculus, vol. 11, no. 1, pp. 111–120, 2021. Search in Google Scholar

Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics