This work is licensed under the Creative Commons Attribution 4.0 International License.
L. M. Siqveland and S. M. Skjæveland, Derivations of the Young-Laplace equation, Capillarity, vol. 4, no. 2, pp. 23–30, 2021.Search in Google Scholar
M. P. Do Carmo, Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications, 2016.Search in Google Scholar
H. Jenkins and J. Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Archive for Rational Mechanics and Analysis, vol. 21, no. 4, pp. 321–342, 1966.Search in Google Scholar
A. Korn,Über Minimalfl¨achen, deren Randkurven wenig von ebenen Kurven abweichen, vol. II. Verlag der Königl. Akad. der Wiss., 1909.Search in Google Scholar
C. Müntz, Zum Randwertproblem der partiellen Differentialgleichung der Minimalfl¨achen, Journal für die Reine und Angewandte Mathematik, vol. 139, pp. 52–79, 1911.Search in Google Scholar
P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Mathematica, vol. 115, no. 1, pp. 271–310, 1966.Search in Google Scholar
J. Douglas, Solution of the problem of Plateau, Transactions of the American Mathematical Society, vol. 33, no. 1, pp. 263–321, 1931.Search in Google Scholar
T. Radó, The problem of the least area and the problem of Plateau, Mathematische Zeitschrift, vol. 32, no. 1, pp. 763–796, 1930.Search in Google Scholar
U. Dierkes, S. Hildebrandt, and F. Sauvigny, Minimal surfaces. Springer, 2010.Search in Google Scholar
B. Dacorogna, Direct methods in the calculus of variations, vol. 78 of Applied Mathematical Sciences. Springer, New York, second ed., 2008.Search in Google Scholar
C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Transactions of the American Mathematical Society, vol. 43, no. 1, pp. 126–166, 1938.Search in Google Scholar
J. C. Nitsche, Lecture on minimal surfaces. Cambridge university press, 1989.Search in Google Scholar
R. D. Gulliver, Regularity of minimizing surfaces of prescribed mean curvature, Annals of Mathematics, vol. 97, no. 2, pp. 275–305, 1973.Search in Google Scholar
L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.Search in Google Scholar
F. Maggi, Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory. No. 135 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2012.Search in Google Scholar
H. Federer, Geometric measure theory, vol. Band 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1969.Search in Google Scholar
L. Simon, Lectures on geometric measure theory, vol. 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.Search in Google Scholar
F. Almgren, The theory of varifolds. Mimeographed notes, Princeton, 1965.Search in Google Scholar
J. E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J., vol. 35, no. 1, pp. 45–71, 1986.Search in Google Scholar
E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., vol. 7, pp. 243–268, 1969.Search in Google Scholar
F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., vol. 4, no. 165, pp. viii+199, 1976.Search in Google Scholar
J. E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math., vol. 103, no. 3, pp. 489–539, 1976.Search in Google Scholar
J. Harrison, Soap film solutions to Plateau’s problem, J. Geom. Anal., vol. 24, no. 1, pp. 271–297, 2014.Search in Google Scholar
J. Harrison and H. Pugh, Existence and soap film regularity of solutions to Plateau’s problem, Adv. Calc. Var., vol. 9, no. 4, pp. 357–394, 2016.Search in Google Scholar
C. De Lellis, F. Ghiraldin, and F. Maggi, A direct approach to Plateau’s problem, J. Eur. Math. Soc., vol. 19, no. 8, pp. 2219–2240, 2017.Search in Google Scholar
F. Bernatzki, On the existence and regularity of mass-minimizing currents with an elastic boundary, Annals of Global Analysis and Geometry, vol. 15, pp. 379–399, 1997.Search in Google Scholar
F. Bernatzki and R. Ye, Minimal surfaces with an elastic boundary, Annals of Global Analysis and Geometry, vol. 19, no. 1, pp. 1–9, 2001.Search in Google Scholar
G. G. Giusteri, P. Franceschini, and E. Fried, Instability paths in the Kirchhoff–Plateau problem, Journal of Nonlinear Science, vol. 26, pp. 1097–1132, 2016.Search in Google Scholar
Y.-c. Chen and E. Fried, Stability and bifurcation of a soap film spanning a flexible loop, Journal of Elasticity, vol. 116, pp. 75–100, 2014.Search in Google Scholar
A. Biria and E. Fried, Buckling of a soap film spanning a flexible loop resistant to bending and twisting, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 470, no. 2172, p. 20140368, 2014.Search in Google Scholar
A. Biria and E. Fried, Theoretical and experimental study of the stability of a soap film spanning a flexible loop, International Journal of Engineering Science, vol. 94, pp. 86–102, 2015.Search in Google Scholar
T. Hoang and E. Fried, Influence of a spanning liquid film on the stability and buckling of a circular loop with intrinsic curvature or intrinsic twist density, Mathematics and Mechanics of Solids, vol. 23, no. 1, pp. 43–66, 2018.Search in Google Scholar
G. G. Giusteri, L. Lussardi, and E. Fried, Solution of the Kirchhoff-Plateau problem, J. Nonlinear Sci., vol. 27, no. 3, pp. 1043–1063, 2017.Search in Google Scholar
G. Bevilacqua, L. Lussardi, and A. Marzocchi, Soap film spanning electrically repulsive elastic protein links, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., vol. 96, pp. A1, 13, 2018.Search in Google Scholar
G. Bevilacqua, L. Lussardi, and A. Marzocchi, Soap film spanning an elastic link, Quart. Appl. Math., vol. 77, no. 3, pp. 507–523, 2019.Search in Google Scholar
G. Bevilacqua, L. Lussardi, and A. Marzocchi, Dimensional reduction of the Kirchhoff-Plateau problem, J. Elasticity, vol. 140, no. 1, pp. 135–148, 2020.Search in Google Scholar
A. De Rosa and L. Lussardi, On the anisotropic Kirchhoff-Plateau problem, Math. Eng., vol. 4, no. 2, pp. Paper No. 011, 13, 2022.Search in Google Scholar
G. Bevilacqua and C. Lonati, Effects of surface tension and elasticity on critical points of the Kirchhoff–Plateau problem, Bollettino dell’Unione Matematica Italiana, vol. 17, no. 2, pp. 221–240, 2024.Search in Google Scholar
S. S. Antman, Nonlinear problems of elasticity, vol. 107 of Applied Mathematical Sciences. Springer, New York, second ed., 2005.Search in Google Scholar
P. Hartman, Ordinary differential equations. Birkh¨auser, Boston, MA, second ed., 1982.Search in Google Scholar
O. Gonzalez, J. H. Maddocks, F. Schuricht, and H. von der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations, vol. 14, no. 1, pp. 29–68, 2002.Search in Google Scholar
A. Lytchak and S. Wenger, Area minimizing discs in metric spaces, Archive for Rational Mechanics and Analysis, vol. 223, pp. 1123–1182, 2017.Search in Google Scholar
P. Creutz, Plateau’s problem for singular curves, Communications in Analysis and Geometry, vol. 30, no. 8, pp. 1779–1792, 2022.Search in Google Scholar
G. Bevilacqua, L. Lussardi, and A. Marzocchi, Variational analysis of inextensible elastic curves, Proceedings of the Royal Society A, vol. 478, no. 2260, p. 20210741, 2022.Search in Google Scholar
G. Bevilacqua, L. Lussardi, and A. Marzocchi, Geometric invariants of non-smooth framed curves, Accepted in INdAM-Series, “Anisotropic Isoperimetric Problems & Related Topics”, arXiv preprint arXiv:2301.03525, 2023.Search in Google Scholar
F. Ballarin, G. Bevilacqua, L. Lussardi, and A. Marzocchi, Elastic membranes spanning deformable curves, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, p. e202300890, 2024.Search in Google Scholar
G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Archive for Rational Mechanics and Analysis, vol. 162, pp. 101–135, 2002.Search in Google Scholar