This work is licensed under the Creative Commons Attribution 4.0 International License.
Adeel M., Lee J.Y., Zain M., Rizwan M., Nawab A., et al., 2019. Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 127: 785–800, doi: 10.1016/j.envint.2019.03.022.AdeelM.LeeJ.Y.ZainM.RizwanM.NawabA.2019Cryptic footprints of rare earth elements on natural resources and living organismsEnvironment International12778580010.1016/j.envint.2019.03.022Open DOISearch in Google Scholar
Ali S.I., Gopalakrishnan B., Venkatesalu V., 2017. Phytotherapy Research pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: a review. Phytotherapy Research, 31: 1140–1161, doi: 0.1002/ptr.5840.AliS.I.GopalakrishnanB.VenkatesaluV.2017Phytotherapy Research pharmacognosy, phytochemistry and pharmacological properties of Achillea millefolium L.: a reviewPhytotherapy Research31114011610.1002/ptr.5840Search in Google Scholar
Beiyuan J., Fang L., Chen H., Li M., Liu D., Wang Y., 2021. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process. Environmental Pollution, 268: 115719, doi: 10.1016/j.envpol.2020.115719.BeiyuanJ.FangL.ChenH.LiM.LiuD.WangY.2021Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction processEnvironmental Pollution26811571910.1016/j.envpol.2020.115719Open DOISearch in Google Scholar
Cakaj A., Hanc A., Lisiak-Zielińska M., Borowiak K., Drapikowska M., 2023.Trifolium pratense and the heavy metal content in various urban areas. Sustainability, 15(9): 7325, doi: 10.3390/su15097325.CakajA.HancA.Lisiak-ZielińskaM.BorowiakK.DrapikowskaM.2023Trifolium pratense and the heavy metal content in various urban areasSustainability159732510.3390/su15097325Open DOISearch in Google Scholar
Cao X., Chen Y., Wang X., Deng X. 2001. Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere, 44(4): 655–661, doi: 10.1016/S0045-6535(00)00492-6.CaoX.ChenY.WangX.DengX.2001Effects of redox potential and pH value on the release of rare earth elements from soilChemosphere44465566110.1016/S0045-6535(00)00492-6Open DOISearch in Google Scholar
Deepika, Haritash A.K., 2023. Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical review. Horticulture, environment, and biotechnology, 64: 709–734, doi: 10.1007/s13580-023-00518-x.DeepikaHaritashA.K.2023Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: a critical reviewHorticulture, environment, and biotechnology6470973410.1007/s13580-023-00518-xOpen DOISearch in Google Scholar
Dinh T., Dobo Z., Kovacs H., 2022. Phytomining of rare earth elements – A review. Chemosphere, 297: 134259, doi: 10.1016/j.chemosphere.2022.134259.DinhT.DoboZ.KovacsH.2022Phytomining of rare earth elements – A reviewChemosphere29713425910.1016/j.chemosphere.2022.134259Open DOISearch in Google Scholar
Dluhosova J., Istvanek J., Nedelnik J., Repkova J., 2018. Red clover (Trifolium pratense) and Zigzag clover (T. Medium) - A Picture of genomic similarites and differences. Frontier Plants Science, 9: 724, doi: 10.3389/fpls.2018.00724.DluhosovaJ.IstvanekJ.NedelnikJ.RepkovaJ.2018Red clover (Trifolium pratense) and Zigzag clover (T. Medium) - A Picture of genomic similarites and differencesFrontier Plants Science972410.3389/fpls.2018.00724Open DOISearch in Google Scholar
Dong Q., Liu Y., Liu G., Guo Y., Yang Q., et al., 2021. Aging and phytoavailability of newly introduced and legacy cadmium in paddy soil and their bioaccessibility in rice grain distinguished by enriched isotope tracing. Journal of Hazardous Materials, 417: 125998, doi: 10.1016/j.jhazmat.2021.125998.DongQ.LiuY.LiuG.GuoY.YangQ.2021Aging and phytoavailability of newly introduced and legacy cadmium in paddy soil and their bioaccessibility in rice grain distinguished by enriched isotope tracingJournal of Hazardous Materials41712599810.1016/j.jhazmat.2021.125998Open DOISearch in Google Scholar
Grcman H., Velikonja-Bolta S., Vodnik D., Kos B., Leštan D. 2001. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant and Soil, 235: 105–114.GrcmanH.Velikonja-BoltaS.VodnikD.KosB.LeštanD.2001EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicityPlant and Soil235105114Search in Google Scholar
He E., Peijnenburg W. J.G.M., Qiu H., 2022. Photosynthetic, antioxidative, and metabolic adjustments of a crop plant to elevated levels of La and Ce exposure. Ecotoxicology and Environmental Safety, 242: 113922, doi: 10.1016/j.ecoenv.2022.113922.HeE.PeijnenburgW. J.G.M.QiuH.2022Photosynthetic, antioxidative, and metabolic adjustments of a crop plant to elevated levels of La and Ce exposureEcotoxicology and Environmental Safety24211392210.1016/j.ecoenv.2022.113922Open DOISearch in Google Scholar
Ibrahim E.A., 2023. Effect of citric acid on phytoextraction potential of Cucurbita pepo, Legenaria siceraria, and Raphanus sativus plants exposed to multi-metal stress. Scientific Reports, 13: 13070, doi: 10.1038/s41598-023-40233-2.IbrahimE.A.2023Effect of citric acid on phytoextraction potential of Cucurbita pepo, Legenaria siceraria, and Raphanus sativus plants exposed to multi-metal stressScientific Reports131307010.1038/s41598-023-40233-2Open DOISearch in Google Scholar
Lihong Y., Xiaorong W., Hao S., Haishi Z., 1999. The effect of EDTA on rare earth elements bioavailability in soil system. Chemosphere, 38(12): 2825–2833, doi: 10.1016/S0045-6535(98)00496-2.LihongY.XiaorongW.HaoS.HaishiZ.1999The effect of EDTA on rare earth elements bioavailability in soil systemChemosphere38122825283310.1016/S0045-6535(98)00496-2Open DOISearch in Google Scholar
Lima A. T., Ottosen L., 2021. Recovering rare earth elements from contaminated soils: Critical overview of current remediation technologies. Chemosphere, 265: 129163, doi: 10.1016/j.chemosphere.2020.129163.LimaA. T.OttosenL.2021Recovering rare earth elements from contaminated soils: Critical overview of current remediation technologiesChemosphere26512916310.1016/j.chemosphere.2020.129163Open DOISearch in Google Scholar
Mohrazi A., Ghasemi-Fasaei R., Mojiri A., Shirazi S.S., 2023. Investigating electro-bio-chemical phytoremediation of multi-metal polluted soil by maize and sunflower using RSM-based optimization methodology. Environmental and Experimental Botany, 211: 105352, doi: 10.1016/j.envexpbot.2023.105352.MohraziA.Ghasemi-FasaeiR.MojiriA.ShiraziS.S.2023Investigating electro-bio-chemical phytoremediation of multi-metal polluted soil by maize and sunflower using RSM-based optimization methodologyEnvironmental and Experimental Botany21110535210.1016/j.envexpbot.2023.105352Open DOISearch in Google Scholar
Nawaz H., Ali A., Saleem M. H., Ameer A., Hafeez A., Alharbi K., Ezzat A., Khan A., Jamil M., Farid G. 2022. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of NI contaminated soil by using canola (Brassica napus). Brasilian Journal of Biology, 82: 1–9, doi: 10.1590/1519-6984.261785.NawazH.AliA.SaleemM. H.AmeerA.HafeezA.AlharbiK.EzzatA.KhanA.JamilM.FaridG.2022Comparative effectiveness of EDTA and citric acid assisted phytoremediation of NI contaminated soil by using canola (Brassica napus)Brasilian Journal of Biology821910.1590/1519-6984.261785Open DOISearch in Google Scholar
Ozaki T., Enomoto S., Minai Y., Ambe A., Ambe F., Makide Y., 2000. Beneficial effect of rare earth elements on the growth of Dryopteris erythrosora. Journal of Plant Physology, 156(3): 330–334, doi: 10.1016/S0176-1617(00)80070-X.OzakiT.EnomotoS.MinaiY.AmbeA.AmbeF.MakideY.2000Beneficial effect of rare earth elements on the growth of Dryopteris erythrosoraJournal of Plant Physology156333033410.1016/S0176-1617(00)80070-XOpen DOISearch in Google Scholar
Poursattari T., Hadi H., 2022. Lead phytoremediation, distribution, and toxicity in Rapeseed (Brassica napus L.): the role of single and combined use of plant growth regulators and chelators. Journal of Soil Science and Plant Nutrition, 22: 1700–1717, doi: 10.1007/s42729-022-00765-4.PoursattariT.HadiH.2022Lead phytoremediation, distribution, and toxicity in Rapeseed (Brassica napus L.): the role of single and combined use of plant growth regulators and chelatorsJournal of Soil Science and Plant Nutrition221700171710.1007/s42729-022-00765-4Open DOISearch in Google Scholar
Rabbani M., Rabbani M.T., Muthoni F., Sun Y., Vahidi E., 2024. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. Bioresource technology, 401: 130751, doi: 10.1016/j.biortech.2024.130751.RabbaniM.RabbaniM.T.MuthoniF.SunY.VahidiE.2024Advancing phytomining: Harnessing plant potential for sustainable rare earth element extractionBioresource technology40113075110.1016/j.biortech.2024.130751Open DOISearch in Google Scholar
Ramos S.J., Dinali G.S., Oliveira C., Martins G.C., Moreira C.G., et al., 2016. Rare earth elements i the soil environment. Currently Pollution Report, 2: 28–50, doi: 10.1007/s40726-016-0026-4.RamosS.J.DinaliG.S.OliveiraC.MartinsG.C.MoreiraC.G.2016Rare earth elements i the soil environmentCurrently Pollution Report2285010.1007/s40726-016-0026-4Open DOISearch in Google Scholar
Remigio A. C., Chaney R. L., Baker A. J., Edraki M., Edraki M., Erskine P. D., Echevarria G., van der Ent A. 2020. Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant and Soil, 449(9): 11–37, doi: 10.1007/s11104-020-04487-3.RemigioA. C.ChaneyR. L.BakerA. J.EdrakiM.EdrakiM.ErskineP. D.EchevarriaG.van der EntA.2020Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitationsPlant and Soil4499113710.1007/s11104-020-04487-3Open DOISearch in Google Scholar
Saleem M.H., Ali S., Kamran M., Iqbal N., Azeem M., et al., 2020. Ethylenediaminetetraacetic Acid (EDTA) mitigates the toxic effect of excessive copper concentrations on growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper accumulation capabilities. Plants (Basel), 9(6): 756, doi: 10.3390/plants9060756.SaleemM.H.AliS.KamranM.IqbalN.AzeemM.2020Ethylenediaminetetraacetic Acid (EDTA) mitigates the toxic effect of excessive copper concentrations on growth, gaseous exchange and chloroplast ultrastructure of Corchorus capsularis L. and improves copper accumulation capabilitiesPlants (Basel)9675610.3390/plants9060756Open DOISearch in Google Scholar
Salifu M., John M.A., Abubakar M., Bankole I.A., Ajayi N.A., Amusan O., 2024. Phytoremediation strategies for heavy metal contamination: a review on sustainable approach for environmental restoration. Journal of environmental protection, 15(4): 450–474, doi: 10.4236/jep.2024.154026.SalifuM.JohnM.A.AbubakarM.BankoleI.A.AjayiN.A.AmusanO.2024Phytoremediation strategies for heavy metal contamination: a review on sustainable approach for environmental restorationJournal of environmental protection15445047410.4236/jep.2024.154026Open DOISearch in Google Scholar
Shan X., Wang H., Zhang S., Zhou H., Zheng Y., Yu H., Wen B., 2003. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Science, 165: 1343–1353, doi: 10.1016/S0168-9452(03)00361-3.ShanX.WangH.ZhangS.ZhouH.ZhengY.YuH.WenB.2003Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotomaPlant Science1651343135310.1016/S0168-9452(03)00361-3Open DOISearch in Google Scholar
Syso A.I., Syromlya T.I., Myadelets M.A., Cherevko A.S., 2016. Ecological and biogeochemical assessment of elemental and biochemical composition of the vegetation of anthropogenically disturbed ecosystems (based on the example of Achillea millefolium L.). Contemporary Problems of Ecology, 9: 643–651, doi: 10.1134/S1995425516050164.SysoA.I.SyromlyaT.I.MyadeletsM.A.CherevkoA.S.2016Ecological and biogeochemical assessment of elemental and biochemical composition of the vegetation of anthropogenically disturbed ecosystems (based on the example of Achillea millefolium L.)Contemporary Problems of Ecology964365110.1134/S1995425516050164Open DOISearch in Google Scholar
Takarina N.D., Pin D.G., 2017. Bioconcentration Factor (BCF) and Translocation Factor (TF) of heavy metal Mangrove trees of Blankan Fish Farma. Makara Journal of Science, 21: 78–81, doi: 10.7454/mss.v21i2.7308.TakarinaN.D.PinD.G.2017Bioconcentration Factor (BCF) and Translocation Factor (TF) of heavy metal Mangrove trees of Blankan Fish FarmaMakara Journal of Science21788110.7454/mss.v21i2.7308Open DOISearch in Google Scholar
Tao Y., Shen L., Feng C., Yang R., Qu J., Ju H., Zhang Y., 2022. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environmental Pollution, 298: 118540, doi: 10.1016/j.envpol.2021.118540.TaoY.ShenL.FengC.YangR.QuJ.JuH.ZhangY.2022Distribution of rare earth elements (REEs) and their roles in plant growth: A reviewEnvironmental Pollution29811854010.1016/j.envpol.2021.118540Open DOISearch in Google Scholar
Wu J., Chen A., Peng A., Wei Z., Liu G., 2013. Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttrium. Plant and Soil, 373: 329–338, doi: 10.1007/s11104-013-1811-0.WuJ.ChenA.PengA.WeiZ.LiuG.2013Identification and application of amino acids as chelators in phytoremediation of rare earth elements lanthanum and yttriumPlant and Soil37332933810.1007/s11104-013-1811-0Open DOISearch in Google Scholar
Yadav S., Pandey V. C., Singh L., 2021. Ecological restoration of fly-ash disposal areas: Challenges and opportunities. LDD, Land degradation & development, 32(16): 4453–4471, doi:10.1002/ldr.4064.YadavS.PandeyV. C.SinghL.2021Ecological restoration of fly-ash disposal areas: Challenges and opportunitiesLDD, Land degradation & development32164453447110.1002/ldr.4064Open DOISearch in Google Scholar
Yin X., Martineau C., Demers I., Basiliko N., Fenton N.J., 2021. The potential environmental risks associated with the development of rare earth element production in Canada. Environmental Risks, 29(3): 354–377, doi: 10.1139/er-2020-0115.YinX.MartineauC.DemersI.BasilikoN.FentonN.J.2021The potential environmental risks associated with the development of rare earth element production in CanadaEnvironmental Risks29335437710.1139/er-2020-0115Open DOISearch in Google Scholar
Yoo G., Park S., Yang H., Nguyen X. N., Kim N., et al., 2017. Two New Phenolic Glycosides from the Aerial Part of Dryopteris erythrosora. Pharmacognosy Magasine, 13(52): 673–676, doi: 10.4103/pm.pm_326_16.YooG.ParkS.YangH.NguyenX. N.KimN.2017Two New Phenolic Glycosides from the Aerial Part of Dryopteris erythrosoraPharmacognosy Magasine135267367610.4103/pm.pm_326_16Open DOISearch in Google Scholar
Zhang H., Zhang K., Duan Y., Sun X., Lin L., et al., 2024. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica. Journal of Hazardous Materials, 465: 133266, doi: 10.1016/j.jhazmat.2023.133266.ZhangH.ZhangK.DuanY.SunX.LinL.2024Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indicaJournal of Hazardous Materials46513326610.1016/j.jhazmat.2023.133266Open DOISearch in Google Scholar
Zhou Y., Tian Y., Ollennu-Chuasam P., Kortesniemi M., Selander K., et al., 2024. Compositional characteristics of red clover (Trifolium pratense) seeds and supercritical CO2 extracted seed oil as potential sources of bioactive compounds. Food Innovation and Advances, 3(1): 11–19, doi: 10.48130/fia-0024-0002.ZhouY.TianY.Ollennu-ChuasamP.KortesniemiM.SelanderK.2024Compositional characteristics of red clover (Trifolium pratense) seeds and supercritical CO2 extracted seed oil as potential sources of bioactive compoundsFood Innovation and Advances31111910.48130/fia-0024-0002Open DOISearch in Google Scholar
Zulkernain N.H., Uvarajan T., Ng C.C., 2023. Roles and significance of chelating agents for potentially toxic elements (PTEs) phytoremediation in soil: A review. Journal of Environmental Management, 341: 117926.ZulkernainN.H.UvarajanT.NgC.C.2023Roles and significance of chelating agents for potentially toxic elements (PTEs) phytoremediation in soil: A reviewJournal of Environmental Management341117926Search in Google Scholar