Cite

[1] Ion R-M, Nyokong T, Nwahara N, Suica-Bunghez I-R, Iancu L, Teodorescu S, et al. Wood preservation with gold hydroxyapatite system. Heritage Science. 2018;6(1):1-12. Search in Google Scholar

[2] Brischke C, Soetbeer A, Meyer-Veltrup L. The minimum moisture threshold for wood decay by basidiomycetes revisited. A review and modified pile experiments with Norway spruce and European beech decayed by Coniophora puteana and Trametes versicolor. Holzforschung. 2017;71(11):893-903.10.1515/hf-2017-0051 Search in Google Scholar

[3] Mindess S. Environmental deterioration of timber. Environmental Deterioration of Materials. 2007; 21:287.10.2495/978-1-84564-032-3/09 Search in Google Scholar

[4] Marais BN, Brischke C, Militz H, Peters JH, Reinhardt L. Studies into fungal decay of wood in ground contact—Part 1: The influence of water-holding capacity, moisture content, and temperature of soil substrates on fungal decay of selected timbers. Forests. 2020;11(12):1284.10.3390/f11121284 Search in Google Scholar

[5] Amoroso GG. Trattato di scienza della conservazione dei monumenti: etica della conservazione, degrado dei monumenti, interventi conservativi, consolidanti e protettivi: Alinea editrice; 2002. Search in Google Scholar

[6] Horie C. Materials for conservation: organic consolidants. Adhesives and Coatings, London. 1987. Search in Google Scholar

[7] Princi E. Handbook of Polymers in Stone Conservation: Smithers Rapra; 2014. Search in Google Scholar

[8] Timar MC, Sandu ICA, Beldean E, Sandu I. FTIR Investigation of Paraloid B72 as Consolidant for Old Wooden Artefacts. Search in Google Scholar

[9] Traistaru AT, Timar MC, Campean M, Croitoru C, Sandu I. Paraloid B72 versus Paraloid B72 with nano-ZnO additive as consolidants for wooden artefacts. Materiale Plastice. 2012;49(4):293-300. Search in Google Scholar

[10] Hayoz P, Peter W, Rogez D. A new innovative stabilization method for the protection of natural wood. Progress in Organic Coatings. 2003 2003/12/01/;48(2):297-309.10.1016/S0300-9440(03)00102-4 Search in Google Scholar

[11] Pánek M, Šimůnková K, Novák D, Dvořák O, Schönfelder O, Šedivka P, et al. Caffeine and TiO2 Nanoparticles Treatment of Spruce and Beech Wood for Increasing Transparent Coating Resistance against UV-Radiation and Mould Attacks. Coatings. 2020;10(12):1141. PubMed PMID: doi:10.3390/coatings10121141. Open DOISearch in Google Scholar

[12] Teodorescu S, Ion R, Stirbescu R, Iancu L, Grigorescu R, Ghioca P. Physico-Chemical Characterization of Wood Treated with Polymeric Systems. Bulletin of the Transilvania University of Brasov Series I: Engineering Sciences. 2019:27-36.10.31926/but.ens.2019.12.61.4 Search in Google Scholar

[13] Ion R-M, Grigorescu R-M, Iancu L, Ghioca P, Radu N. Polymeric micro-and nanosystems for wood artifacts preservation: IntechOpen London, UK; 2018.10.5772/intechopen.79135 Search in Google Scholar

[14] Kajaks J, Kalnins K, Matvejs J. Accelerated Aging of WPCs Based on Polypropylene and Plywood Production Residues. Open Engineering. 2019;9(1):115-28.10.1515/eng-2019-0014 Search in Google Scholar

[15] David ME, Ion RM, Grigorescu RM, Iancu L, Constantin M, Stirbescu RM, et al. Wood Surface Modification with Hybrid Materials Based on Multi-Walled Carbon Nanotubes. Nanomaterials (Basel, Switzerland). 2022 Jun 9;12(12). PubMed PMID: 35745330. Pubmed Central PMCID: PMC9229745. Epub 2022/06/25. eng.10.3390/nano12121990922974535745330 Search in Google Scholar

[16] ASTM D. 2244. Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. USA; 2013. Search in Google Scholar

[17] ASTM A. C805/C805M-13a: Standard Test Methods for Rebound Number of Hardened Concrete. 2013. Search in Google Scholar

[18] Mitsui K. Changes in the properties of light-irradiated wood with heat treatment. Holz als Roh-und Werkstoff. 2004;62(1):23-30.10.1007/s00107-003-0436-z Search in Google Scholar

[19] Chang Y-H, Huang P-H, Wu B-Y, Chang S-W. A study on the color change benefits of sustainable green building materials. Construction and Building Materials. 2015; 83:1-6.10.1016/j.conbuildmat.2015.02.065 Search in Google Scholar

[20] Tolvaj L, Mitsui K. Correlation between hue angle and lightness of light irradiated wood. Polymer Degradation and Stability. 2010;95(4):638-42.10.1016/j.polymdegradstab.2009.12.004 Search in Google Scholar

[21] Oberhofnerová E, Pánek M, García-Cimarras A. The effect of natural weathering on untreated wood surface. Maderas Ciencia y tecnología. 2017; 19:173-84.10.4067/S0718-221X2017005000015 Search in Google Scholar

[22] Nikafshar S, Nejad M. Evaluating efficacy of different UV-stabilizers/absorbers in reducing UV-degradation of lignin. Holzforschung. 2022;76(3):235-44.10.1515/hf-2021-0147 Search in Google Scholar

[23] Geffertová J, Geffert A, Výbohová E. The effect of UV irradiation on the colour change of the spruce wood. Acta Facultatis Xylologiae Zvolen res Publica Slovaca. 2018;60(1):41-50. Search in Google Scholar

[24] Favaro M, Mendichi R, Ossola F, Russo U, Simon S, Tomasin P, et al. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part I: Photo-oxidative weathering. Polymer Degradation and Stability. 2006;91(12):3083-96.10.1016/j.polymdegradstab.2006.08.012 Search in Google Scholar

[25] Kubovský I, Kačíková D, Kačík F. Structural changes of oak wood main components caused by thermal modification. Polymers. 2020;12(2):485.10.3390/polym12020485707765832098208 Search in Google Scholar