Cite

[1] Adriaens A. European actions to promote and coordinate the use of analytical techniques for cultural heritage studies, TrAC Trends in Analytical Chemistry. 2004; 23(8): 583–586.10.1016/j.trac.2004.07.001 Search in Google Scholar

[2] Salem Y., Mohamed E.H. The role of archaeometallurgical characterization of ancient coins in forgery detection. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2019; 461: 247-255.10.1016/j.nimb.2019.10.017 Search in Google Scholar

[3] Tidblad, J. Atmospheric corrosion of heritage metallic artefacts: processes and prevention. Corrosion and Conservation of Cultural Heritage Metallic Artefacts. 2013; 37–52.10.1533/9781782421573.1.37 Search in Google Scholar

[4] Di Turo F, Montoya N, Piquero-Cilla J, De Vito C, Coletti F, Favero G, Doménech-Carbó A. Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Analytica Chimica Acta 2017; 955: 36-47.10.1016/j.aca.2016.12.007 Search in Google Scholar

[5] Fierascu RC, Ion RM, Fierascu I. Archaeometallurgical Characterization of Numismatic Artifacts Instrumentation Science & Technology. 2015: 43(1): 107-11410.1080/10739149.2014.961642 Search in Google Scholar

[6] Stoleriu S., Sandu I., Brebu M., Sandu AV. Autentificarea monedelor antice din bronz prin studiul patinei arheologice: I. Compoziţie şi structurǎ. Rev. Chim (București) 2005; 56: 981-994. Search in Google Scholar

[7] Ioanid EG, Ioanid A, Rusu DE, Doroftei F. Surface investigation of some medieval silver coins cleaned in high-frequency cold plasma, Journal of Cultural Heritage. 2011; 12(2): 220-226.10.1016/j.culher.2010.09.004 Search in Google Scholar

[8] Ingo G.M. et al., Microchemical investigation on Renaissance coins minted at Gubbio (Central Italy) Appl. Phys. A Mater. Sci. Process., 79, pp. 319-325, 2004, doi: 10.1007/s00339-004-2526-010.1007/s00339-004-2526-0 Search in Google Scholar

[9] Ingo, G.M. & Riccucci, Cristina & Guida, Giuseppe & Pascucci, M. & Giuliani, Chiara & Messina, Elena & Fierro, G. & Di Carlo, Gabriella. (2018). Micro-chemical investigation of corrosion products naturally grown on archaeological Cu-based artefacts retrieved from the Mediterranean sea. Applied Surface Science. 470. 10.1016/j.apsusc.2018.11.144. Search in Google Scholar

[10] Constantinides I., Adriaens A., Adams F. Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science. 2002; 189 (1–2): 90-101.10.1016/S0169-4332(02)00005-3 Search in Google Scholar

[11] Doménech-Carbó MT, Álvarez-Romero C., Doménech-Carbó A., Osete-Cortina L., Martínez-Bazán ML, Microchemical surface analysis of historic copper-based coins by the combined use of FIBFESEM-EDX, OM, FTIR spectroscopy and solid-state electrochemical techniques Microchemical Journal. 2019; 148 (573-581).10.1016/j.microc.2019.05.039 Search in Google Scholar

[12] de Oliveira, F. J. R., Lago, D. C. B., Senna, L. F., de Miranda, L. R. M., & D’Elia, E. Study of patina formation on bronze specimens. Materials Chemistry and Physics. 2009: 115(2-3): 761–770.10.1016/j.matchemphys.2009.02.035 Search in Google Scholar

[13] Grassini, S., Angelini, E., Mao, Y., Novakovic, J., & Vassiliou, P. (2011). Progress in Organic Coatings Aesthetic coatings for silver based alloys with improved protection efficiency. Progress in Organic Coatings. 2011; 72(1-2): 131–137. Search in Google Scholar

[14] Milot J, Malod-Dognin C, Blichert-Toft J, Télouk P, Albarède F, Sampling and combined Pb and Ag isotopic analysis of ancient silver coins and ores. Chemical Geology. 2021; 564: 120028.10.1016/j.chemgeo.2020.120028 Search in Google Scholar

[15] Fessmann, J. Plasma treatment for cleaning of metal parts. 1993; 59: 290–296.10.1016/0257-8972(93)90099-A Search in Google Scholar

[16] Fracassi, F., Agostino, R., Palumbo, F., Angelini, E., Grassini, S., & Rosalbino, F. Application of plasma deposited organosilicon thin films for the corrosion protection of metals. 2003; 175: 107–111. Search in Google Scholar

[17] Drakaki, E, Karydas, A G, Klinkenberg, B, Kokkoris, M, Serafetinides, A A, Stavrou, E, Vlastou, R and Zarkadas, C 2004 Laser Cleaning on Roman Coins. Applied Physics A 79, 1111–1115,10.1007/s00339-004-2657-3 Search in Google Scholar

[18] Viljus, A. and Viljus, M., The Conservation of Early Post-Medieval Period Coins Found in Estonia. Journal of Conservation and Museum Studies, 2013; 10(2): 30–44.10.5334/jcms.1021204 Search in Google Scholar

[19] MacLeod, I, and North, N A 1979 Conservation of Corroded Silver. Studies in Conservartion 24, 165–170.10.1179/sic.1979.019 Search in Google Scholar

[20] Ghoneim, M A M, and Megahed, M M 2009 Treatment and Conservation of a Group of Roman Coins Discovered in Tell Basta, Egypt. In: Ferrari, A (ed.) Proceedings of 4th International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin. Vol. II. Cairo, Egypt, 6th-8th December 2009. Italy: Angelo Ferrari and CNR, Institute of Chemical Methodologies, 143– 153. Search in Google Scholar

[21] Dumitriu I., Fierascu RC, Catangiu A., Neata, M., Ion RM., Somoghi R. A synthetic approach into the restoration and conservation of metal artifacts (coins). Journal of optoelectronics and advanced materials 2011; 13 (7): 874 – 878. Search in Google Scholar

[22] Livingston R.A., Influence of the environment on the patina of the statue of liberty Environ. Sci. Technol. 1991; 25: 1400-1408. Search in Google Scholar

[23] Marani D., Patterson J.W., Anderson P.R.Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Research. 1995; 29(5): 1317-1326.10.1016/0043-1354(94)00286-G Search in Google Scholar

[24] Akgul FA., Akgul G., Yildirim N., Unalan HE, Turan R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films, Materials Chemistry and Physics. 2014; 147(3): 987-995. Search in Google Scholar

[25] Scanlon D.O. and Watson GW. Uncovering the complex behavior of hydrogen in Cu2O Phys. Rev. Lett. 2011; 106:186403.10.1103/PhysRevLett.106.18640321635109 Search in Google Scholar

[26] Scott D A. Copper and Bronze in Art: Corrosion, Colorants, Conservation. 2002.Los Angeles: Getty Publications. Search in Google Scholar

[27] Dang V.H., Influence of long-term corrosion in chloride environment on mechanical behaviour of RC beam. Eng. Struct. 2013; 48: 558-568. Search in Google Scholar

[28] Guan, Y. C. An Electrochemical Study on the Dissolution of Copper and Silver from Silver-Copper Alloys Journal of The Electrochemical Society. 1995; 142(6): 1819-1824. Search in Google Scholar

[29] Weier K.L. et al., X-ray analysis of ancient coins from Thessaly, Nomismatika Khronika, 10, p. 11 - 24, 1991. Search in Google Scholar

[30] Schweizer F., Analysis of ancient coins using a point source linear X-ray spectrometer: a critical review, E.T. Hall, D.M. Metcalf (Eds.), Methods of Chemical and Metallurgical Investigation of Ancient Coinage, Royal Numismatics Society, No. 8, p. 153, 1972. Search in Google Scholar

[31] Baboian R. (Ed.), Corrosion Tests and Standards: Application and Interpretation, ASTM Series, Philadelphia, USA, p. 4, 2005.10.1520/MNL20-2ND-EB Search in Google Scholar

[32] Zou, S., Zhou X, Rao Y, Hua X, Cui X. Corrosion resistance of nickel-coated SiCp/Al composites in 0.05 M NaCl solution, Journal of Alloys and Compounds, 2019; 780: 937-947.10.1016/j.jallcom.2018.10.245 Search in Google Scholar

[33] Fawcett, T., Blanton, J., Blanton, T., Arias, L., & Suscavage, T. Non-destructive evaluation of Roman coin patinas from the 3rd and 4th century. Powder Diffraction. 2018; 33(2): 88-97.10.1017/S0885715618000180 Search in Google Scholar

[34] Torrisi, L., Caridi F, Giuffrida L, Torrisi A, Mondio G, Serafino T, Caltabiano M, Castrizio VE, Paniz E, Salici A. LAMQS and XRF analyses of ancient Egyptian bronze coins, Radiation Effects and Defects in Solids, 2010; 165(6-10): 626–636.10.1080/10420151003729508 Search in Google Scholar

[35] Mansfeld F., The polarization resistance technique for measuring corrosion currents (Eds.), Advances in Corrosion Engineering and Technology, vol. 6, Plenum Press, New York, p. 163, 1976.10.1007/978-1-4684-8986-6_3 Search in Google Scholar

[36] Serghini-Idrissi M, Bernard MC, Harrif FZ, Joiret S, Rahmouni K, Srhiri A, Takenouti H, Vivier V, Ziani M. Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin, Electrochimica Acta, 2005; 50(24): 4699–4709.10.1016/j.electacta.2005.01.050 Search in Google Scholar

[37] Li. B., Jiang X, Wu R, Wei B, Hu T, Pan C, Formation of black patina on an ancient Chinese bronze sword of the Warring States Period, Applied Surface Science, 2018; 455: 724–728. Search in Google Scholar

[38] Northover SM, Northover JP. Microstructures of ancient and modern cast silver–copper alloys. Materials Characterization. 2014; 90: 173–184.10.1016/j.matchar.2014.01.028 Search in Google Scholar

[39] Di Fazio M., Felici AC, Catalli F., Doménech-Carbó MT, De Vito C, Doménech-Carbó A, Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins, Microchemical Journal, 2019; 104306.10.1016/j.microc.2019.104306 Search in Google Scholar

[40] Vachtsevanos, G. et al., (Eds.), Corrosion Processes. Structural Integrity, 2020.10.1007/978-3-030-32831-3 Search in Google Scholar

[41] Enikeev M.R., Potemkin D.I., Enikeeva LV, Enikeev, ER, Maleeva MA, Snytnikov PV, Gubaydulli IM, Analysis of corrosion processes kinetics on the surface of metals, Chemical Engineering Journal. 2020; 383: 123131. Search in Google Scholar