Cite

[1] Kaza S., Yao L.C., Bhada-Tata P., Woerden F.V.: What a waste 2.0: A global snapshot of solid waste management to 2050, World Bank Publications, Last accessed September 20; (2018); https://openknowledge.worldbank.org/handle/10986/30317 Search in Google Scholar

[2] Babayemi J.O. and Dauda K.T.: Evaluation of solid wastes generation, categories, and disposal options in developing countries: A case study of Nigeria, J Appl Sci Environ Manage 13(3); 83 – 88; (2009); https://doi.org/10.4314/jasem.v13i3.5537010.4314/jasem.v13i3.55370 Search in Google Scholar

[3] Elemile O.O., Sridhar M.K.C., Oluwatuyi O.E.: Solid waste characterization and its recycling potential: Akure municipal dumpsite, South Western Nigeria, J Mater Cycle Waste Manage 21(3); 583 – 593; (2019); https://doi.org/10.1007/s10163-018-00820-210.1007/s10163-018-00820-2 Search in Google Scholar

[4] Hart A.: Mini-review of waste shell-derived materilas’ applications, waste Management and Research, 38(5); 514 – 527; (2020)10.1177/0734242X1989781231928177 Search in Google Scholar

[5] Etta L.O., Ibearugbulem O.M., Ezeh J.C., Anya U.C.: A reinvestigation of the properties of using Periwinkle shell as partial replacement for granite in concrete, International Journal of Engr Sci Invention, 2(3); 54 – 59; (2013) Search in Google Scholar

[6] Falade F., Ipkonmwosa E.E., Ojediran N.I.: Behavior of lightweight concrete containing Periwinkle shells at elevated temperature, Journal of Engr Sci and technology, 5(4); 377 – 390; (2010) Search in Google Scholar

[7] Oyedepo O.J.: Evaluation of the properties of lightweight concrete using Periwinkle shells as a partial replacement for coarse aggregate, Journal of Applied Sciences and Environmental Management, 20(30); 498 – 505; (2016)10.4314/jasem.v20i3.2 Search in Google Scholar

[8] Onuoha C., Onyemaobi O.O., Anyakwo C.N., Onuegbu G.C.: Physical and Morphological properties of Periwinkle shell – filled recycled polypropylene composites, Intl J Innovation Sciences, Engr & Technol., 4(5); 186 – 196; (2017) Search in Google Scholar

[9] Olurunmeye F.I., Barambu Y.U., Ishaya A.A.: Effects of Periwinkle shell ash on permeability and sorptivity characteristics of concrte under different curing conditions, Intl J Modern Trends in Engr and Research, 4(11); 101 – 108; (2017)10.21884/IJMTER.2017.4351.ZRY8K Search in Google Scholar

[10] Solttanzadeh F., Emam-Jomeh M., Edalat-Behbahani A., Soltanzadeh Z.: Development and Characterization of blended cements containing seashell powder, Construction and Building Materials, 161; 292 – 304; (2018); https://doi.org/10.1016/j.conbuildmat.2017.11.11 Search in Google Scholar

[11] Etim R.K., Ekpo D.U., Udofia G.E., Attah I.C.: Evaluation of lateritic soil stabilised with lime and Periwinkle shell ash admixture bound for sustainable road materials, Innovative Infrastructure Solutions, 7(1); (2021); https://doi.org/10.1007/s41062-021-00665-z10.1007/s41062-021-00665-z Search in Google Scholar

[12] Achi C.G., Coker A.O., Sridhar M.K.C.: Cassava processing wastes: Options and Potentials for Resource Recovery in Nigeria. In: S. Ghosh (eds) Utilization and Management of Bioresources, Springer, Singapore, pp. 77 – 89, (2018), https://10.1007/978-981-10-5349-8 Search in Google Scholar

[13] Watthier E., Andrenni C.L., Torres D.G.B., Kuczman D., Tavares M.H.F., Lopes D.D., Gomes S.D.: Cassava wastewater treatment in fixed bed reactor: Organic matter removal and biogas production, Front. Sustain. Food Syst; (2019); https://doi.org/10.3389/fsufs.2019.0000610.3389/fsufs.2019.00006 Search in Google Scholar

[14] Olukanni D.O., Olatunji T.O.: Cassava waste management and biogas generation potential in selected Local Government Areas in Ogun State, Nigeria, Recycling 3(4); 58; (2018); https://doi.org/10.3390/recycling304005810.3390/recycling3040058 Search in Google Scholar

[15] Andreani C.L., Torres D.G.B., Schultz L., Carvalho K.Q., Gomes S.D.: Hydrogen production from cassava processing wastewater in an anaerobic fixed bed reactor with bamboo as a support material, EngAgr 35(3); 578 – 587; (2015); https://doi.org/10.1590/1809-4430-Eng.Agrc.v35n3p578-587/2015 Search in Google Scholar

[16] Intanoo P., Chaimongkol P., Chavadej S.: Hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactors (UASB) with an emphasion maximum hydrogen production, Intl J Hydrogen Energ 41; 6107 – 6114; (2016); https://doi.org/10.1016/j.ijhydene.2015.10.12510.1016/j.ijhydene.2015.10.125 Search in Google Scholar

[17] Araujo I.R.C., Gomes S.D., Tonello T.U., Lucas S.D.M., Mari A.G., Vargas R.J.: Methane production from cassava starch wastewater in packed-bed reactor and continuous flow, Engenharia Agricola, 38(2); 270 – 276; (2018); https://doi.org/10.1590/1809-4430-eng.agric.v38n2p270-276/201810.1590/1809-4430-eng.agric.v38n2p270-276/2018 Search in Google Scholar

[18] Magdalene M., Ribasl F., Cereda M.P., Bǖas R.V.: Use of cassava wastewater treated with alkaline agents as fertilizer for maize (Zea mays L.), Braz Arch Biol Technol., 53(1); (2010); https://doi.org/10.1590/s1516-8913201000010000710.1590/S1516-89132010000100007 Search in Google Scholar

[19] Guimařaes G.H.C., Dantas R.L., Sousa A.S.B., Soares L.G., Melo R.S., Silva R.S., Lima R.P., Mendonca R.M.N., Beaudry R.M., Silva S.M.: Impact of Cassava Starch-alginate based coating added with ascorbic acid and elicitor on quality and sensory attributes during pineapple storage, African Journal of Agricultural Research, 12(9); 664 – 673; (2017); https://doi.org/10.58971/AJAR2016.11652 Search in Google Scholar

[20] Praseptiangga D., Utami R., Khasanah L.U., Evirananda I.P., Kawiji: Effect of Cassava-based edible coating incorporated with lemongrass essential oil on the quality of papaya MJ9, International Conference on Advanced Materials for Better Future. IOP Conference Series: Materials Science and Engineering, 176(1):012054; (2017); https://doi.org/10.1088/1757-899X/176/1/01205410.1088/1757-899X/176/1/012054 Search in Google Scholar

[21] Okeyinka O.M., Idowu O.J.: Assessment of the suitability of paper waste as an engineering material, Engineering, Technology & Applied Science Research, 4(6); 724 – 727; (2014); https://doi.org/10.48084/etasr.48510.48084/etasr.485 Search in Google Scholar

[22] Robert U.W., Etuk S.E., Umoren G.P., Agbasi O.E.: Assessment of thermal and mechanical properties of composite board produced from coconut (Cocos nucifera) husks, waste newspapers, and cassava starch, Intl J Thermophys, 40:83; (2019); https://doi.org/10.1007/s10765-019-2547-810.1007/s10765-019-2547-8 Search in Google Scholar

[23] Okorie U.S., Robert U.W., Iboh U.A., Umoren G.P.: Assessment of the suitability of tiger nut fibre for structural applications, J Renew Energ Mech, 3(1); 32 – 39; (2020); https://doi.org/10.25299/rem.2020.vol3(01).4417 Search in Google Scholar

[24] Eziefula U.G., Obiechefu G.C., Charles M.E.: Use of Periwinkle shell by-products and Portland cement-based materials: an overview, Intl J Environment and Waste Management, 26(3); 362 – 388; (2020); https://doi.org/10.1504/IJEWM.2020.10916510.1504/IJEWM.2020.109165 Search in Google Scholar

[25] Barros F., Ana P.D., Jǖnio C., Glăucia M.: Potential use of cassava wastewater in Biotechnological processes. In Agriculture Issues and Policies: Cassava Farming, Uses and Economic Impact; C.M. Pace, ed. NDVA Science Publishers Inc; New York, NY, USA, Chapter 2; pp. 33 – 54, ISBN 978-1-61209655-1; (2012) Search in Google Scholar

[26] Olukanni D.O., Agunwamba J.C., Abahgu R.U.: Interaction between suspended and settled solid particles in cassava waste water, Sci Res. Essay, 8(10); 414 – 424; (2013); https://doi.org/10.5897/SRE12.658 Search in Google Scholar

[27] Omilani O., Abass A., Okoruwa V.D.: Willingness to pay for value-added solid waste management system among cassava processors in Nigeria; (2015); www.tropentag.de/2015/proceedings/node515.html Search in Google Scholar

[28] ASTM D 6393: Standard Test Method for Bulk Solids Characterization by Carr’s Indices, ASTM International, West Conshohocken, PA; (2021) Search in Google Scholar

[29] Sedha R.S.: A Textbook of Applied Eklectronics, 2ndedn., S. Chand and Co. Ltd, New Delhi, p. 30, 126; (2008) Search in Google Scholar

[30] Robert U.W., Etuk S.E., Agbasi O.E., Iboh U.A., Ekpo S.S.: Temperature-Dependent Electrical Characteristics of Disc-shaped Compacts fabricated using Calcined Eggshell Nano powder and Dry Cassava starch. Powder Metallurgy Progress, 20(1); 12 – 20; (2020); http://dx.doi.org/10.2478/pmp-2020-000210.2478/pmp-2020-0002 Search in Google Scholar

[31] Etuk S.E., Robert U.W., Emah J.B., Agbasi O.E.: Dielectric properties of eggshell membrane of some select bird species, Arabian Journal for Science and Engineering; (2020); https://doi.org/10.1007/s13369-020-04931-710.1007/s13369-020-04931-7 Search in Google Scholar

[32] Thereja B.L.: Basic Electronics Solid State, S. Chand and Company Ltd, New Delhi, p. 63, (2008) Search in Google Scholar

[33] Kanig J. L., Lachman L., Lieberman H. A.: The theory and practice of industrial pharmacy, 3rd edn. Philadelphia, Germany, (1989) Search in Google Scholar

[34] Carr R.L.: Chem Eng, 72, 163 – 168, (1965) Search in Google Scholar

[35] Obot M.U., Yawas D.S., Aku S.Y.: Development of an abrasive material using Periwinkle shells, Journal of King Saud University – Engineering Sciences, 29; 284 – 288; (2017)10.1016/j.jksues.2015.10.008 Search in Google Scholar

[36] Wiendartun W., Risdiana R., Fitrilawati F., Siregar R.E.: AIP Conference Proceedings, (2015); http://doi.org/10.1063/1.494189010.1063/1.4941890 Search in Google Scholar

[37] Schultz M.C.: Grob’s Basic Electronics, 11thedn, McGraw-Hill Companies, New York, pp. 478 – 480; ISBN 978-0-07-122137-5; (2011). Search in Google Scholar

eISSN:
2537-4990
Language:
English