[
Abedeen M.Z., Sharma M., Singh Kushwaha H., Gupta R., Sensitive Enzyme-Free Electrochemical Sensors for the Detection of Pesticide Residues in Food and Water, TrAC Trends in Analytical Chemistry, 176, 117729 (2024).
]Search in Google Scholar
[
Abid K., Foti A., Khaskhoussi A., Celesti C., D’Andrea C., Polykretis P., Matteini P., Iannazzo D., Maalej R., Gucciardi P.G., Neri G., A Study of Screen-Printed Electrodes Modified with MoSe2 and AuNPs-MoSe2 Nanosheets for Dopamine Sensing, Electrochimica Acta, 475, 143371 (2024).
]Search in Google Scholar
[
Ahmad N., Rasheed S., Mohyuddin A., Fatima B., Ikram Nabeel M., Riaz T.M., Najamul-Haq M., Hussain D., 2D MXenes and Their Composites; Design, Synthesis, and Environmental Sensing Applications, Chemosphere, 352, 141280 (2023).
]Search in Google Scholar
[
Alfarobi H., Yulianti E.S., Intan N., Whulanza Y., Park D.H., Rahman S.F., Preliminary Study on the Fabrication of Multi-Layer Screen-Printed Electrode for Biosensor Application, International Journal of Technology, 13, 1692-1703 (2022).
]Search in Google Scholar
[
Alizadeh M., Demir E., Aydogdu N., Zare N., Karimi F., Kandomal S.M., Rokni H., Ghasemi Y., Recent Advantages in Electrochemical Monitoring for the Analysis of Amaranth and Carminic Acid as Food Color, Food and Chemical Toxicology, 163, 112929 (2022).
]Search in Google Scholar
[
Ambaye A.D., Kefeni K.K., Mishra S.B., Nxumalo E.N., Ntsendwana B., Recent Developments in Nanotechnology-Based Printing Electrode Systems for Electrochemical Sensors, Talanta, 225, 121951 (2021).
]Search in Google Scholar
[
Anshori I., Ula L.R., Ihsantia G., Asih N., Durable Nonenzymatic Electrochemical Sensing Using Silver Decorated Multi-Walled Carbon Nanotubes for Uric Acid Detection, Nanotechnology, 35, 115501 (2024).
]Search in Google Scholar
[
Antuña-Jiménez D., González-García M.B., Hernández-Santos D., Fanjul-Bolado P., Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing, Biosensors, 10, 1–22 (2020).
]Search in Google Scholar
[
Arduini F., Cinti S., Mazzaracchio V., Scognamiglio V., Amine A., Moscone D., Carbon Black as an Outstanding and Affordable Nanomaterial for Electrochemical (Bio)Sensor Design, Biosensors and Bioelectronics, 156, 112033 (2020).
]Search in Google Scholar
[
Arrieiro M.O.B., Arantes L.C., Moreira D.A.R., Pimentel D.M., Lima C.D., Costa L.M.F., Verly R.M., dos Santos W.T.P., Electrochemical Detection of Eutylone Using Screen-Printed Electrodes: Rapid and Simple Screening Method for Application in Forensic Samples, Electrochimica Acta, 412, 140106 (2022).
]Search in Google Scholar
[
Arumugam B., Palanisamy S., Janagaraj G., Ramaraj S.K., Chiesa M., Subramanian C., Real-Time Detection of 2,4,6-Trichlorophenol in Environmental Samples Using Fe3O4 Nanospheres Decorated Graphitic Carbon Nitride Nanosheets, Surfaces and Interfaces, 39, 102930 (2023).
]Search in Google Scholar
[
Baccarin M., Rowley-Neale S.J., Cavalheiro É.T.G., Smith G.C., Banks C.E., Nanodiamond Based Surface Modified Screen-Printed Electrodes for the Simultaneous Voltammetric Determination of Dopamine and Uric Acid, Microchimica Acta, 186, 1-9 (2019).
]Search in Google Scholar
[
Benmassaoud Y., Murtada K., Salghi R., Zougagh M., Ríos Á., Surface Polymers on Multiwalled Carbon Nanotubes for Selective Extraction and Electrochemical Determination of Rhodamine B in Food Samples, Molecules, 26, 2670 (2021).
]Search in Google Scholar
[
Bernardo-Boongaling V.R.R., Serrano N., García-Guzmán J.J., Palacios-Santander J.M., Díaz-Cruz J.M., Screen-Printed Electrodes Modified with Green-Synthesized Gold Nanoparticles for the Electrochemical Determination of Aminothiols, Journal of Electroanalytical Chemistry, 847, 113184 (2019).
]Search in Google Scholar
[
Bertel L., Miranda D.A., García‐martín J.M., Nanostructured Titanium Dioxide Surfaces for Electrochemical Biosensing, Sensors, 21, 1-24 (2021).
]Search in Google Scholar
[
Bonacin J.A., Dos Santos P.L., Katic V., Foster C.W., Banks C.E., Use of Screen-Printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine, Electroanalysis, 30, 170-179 (2018).
]Search in Google Scholar
[
Cancelliere R., Cianciaruso M., Carbone K., Micheli L., Biochar: A Sustainable Alternative in the Development of Electrochemical Printed Platforms, Chemosensors, 10, 344 (2022).
]Search in Google Scholar
[
Canciu A., Cernat A., Tertis M., Botarca S., Bordea M.A., Wang J., Cristea C., Proof of Concept for the Detection with Custom Printed Electrodes of Enterobactin as a Marker of Escherichia Coli, International Journal of Molecular Sciences, 23, 9884 (2022).
]Search in Google Scholar
[
Cazac V., Cîrja J., Balan E., Mohora C., The Study of the Screen Printing Quality Depending on the Surface to Be Printed, MATEC Web of Conferences, 178, 1-6 (2018).
]Search in Google Scholar
[
Cesewski E., Johnson B.N., Electrochemical Biosensors for Pathogen Detection, Biosensors and Bioelectronics, 159, 112214 (2020).
]Search in Google Scholar
[
Chen C.L.C., Ding S., Wang J., Kemp E., Palomäki T., Ruuth I.A., Boeva Z.A., Nurminen T.A., Vänskä R.T., Zschaechner L.K., Pérez A.G., Hakala T.A., Wardale M., Haeggström E., Bobacka J., Kilic N.M., Singh S., Keles G., Cinti S. et al., Carbon-Based Electrochemical Biosensors as Diagnostic Platforms for Connected Decentralized Healthcare, Biosensors, 13, 143190 (2023a).
]Search in Google Scholar
[
Chen Y., Sun Y., Niu Y., Wang B., Zhang Z., Zeng L., Li L., Sun W., Portable Electrochemical Sensing of Indole-3-Acetic Acid Based on Self-Assembled MXene and Multi-Walled Carbon Nanotubes Composite Modified Screen-Printed Electrode, Electroanalysis, 35, 1-9 (2023b).
]Search in Google Scholar
[
Cheng Y.Y., Feng X.Z., Zhan T., An Q.Q., Han G.C., Chen Z., Kraatz H.B., A Facile Indole Probe for Ultrasensitive Immunosensor Fabrication toward C-Reactive Protein Sensing, Talanta, 262, 1-9 (2023).
]Search in Google Scholar
[
Clark L.C., Lyons C., Electrode Systems for Continuous Monitoring in Cardiovascular Surgery, Annals of the New York Academy of Sciences, 102, 29-45 (1962).
]Search in Google Scholar
[
Cotchim S., Thavarungkul P., Kanatharana P., Thantipwan T., Jiraseree-amornkun A., Wannapob R., Limbut W., A Portable Electrochemical Immunosensor for Ovarian Cancer Uses Hierarchical Microporous Carbon Material from Waste Coffee Grounds, Microchimica Acta, 190, 1-12 (2023).
]Search in Google Scholar
[
Crapnell R.D., Garcia-Miranda Ferrari A., Dempsey N.C., Banks C.E., Electroanalytical Overview: Screen-Printed Electrochemical Sensing Platforms for the Detection of Vital Cardiac, Cancer and Inflammatory Biomarkers, Sensors & Diagnostics, 1, 405-428 (2022).
]Search in Google Scholar
[
D’Aurelio R., Tothill I.E., Salbini M., Calò F., Mazzotta E., Malitesta C., Chianella I., A Comparison of EIS and QCM NanoMIP-Based Sensors for Morphine, Nanomaterials, 11, 3360 (2021).
]Search in Google Scholar
[
Damalerio R.B., Lim R.Q., Wee J.Y.V., Lim R.Y., Cheng M.Y., Evaluation of Screen Printing Process in Fabrication of Small Profile Conductive Ink-Based Contact Force Sensor, 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), 2023, Orlando, FL, USA, pp. 461-466.
]Search in Google Scholar
[
David M., Şerban A., Enache T.A., Florescu M., Electrochemical Quantification of Levothyroxine at Disposable Screen-Printed Electrodes, Journal of Electroanalytical Chemistry, 911, 116240 (2022).
]Search in Google Scholar
[
de Cássia Mendonça J., da Rocha L.R., Capelari T.B., Prete M.C., Angelis P.N., Segatelli M.G., Tarley C.R.T., Design and Performance of Novel Molecularly Imprinted Biomimetic Adsorbent for Preconcentration of Prostate Cancer Biomarker Coupled to Electrochemical Determination by Using Multi-Walled Carbon Nanotubes/Nafion®/Ni(OH)2-Modified Screen-Printed Electrode, Journal of Electroanalytical Chemistry, 878, 114582 (2020).
]Search in Google Scholar
[
Deroco P.B., Fatibello-Filho O., Arduini F., Moscone D., Effect of Different Carbon Blacks on the Simultaneous Electroanalysis of Drugs as Water Contaminants Based on Screen-Printed Sensors, Electroanalysis, 31, 2145-2154 (2019).
]Search in Google Scholar
[
Dias D., Postolache O., Monge J., Potentionstat Network for Precision Agriculture, 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON 2024), 2024. Porto, Portugal, pp. 885-890.
]Search in Google Scholar
[
Díaz-Cruz J.M., Serrano N., Pérez-Ràfols C., Ariño C., Esteban M., Electroanalysis from the Past to the Twenty-First Century: Challenges and Perspectives, Journal of Solid State Electrochemistry, 24, 2653-2661 (2020).
]Search in Google Scholar
[
Drobysh M., Liustrovaite V., Kanetski Y., Brasiunas B., Zvirbliene A., Rimkute A., Gudas D., Kucinskaite-Kodze I., Simanavicius M., Ramanavicius S., Slibinskas R., Ciplys E., Plikusiene I., Ramanavicius A., Electrochemical Biosensing Based Comparative Study of Monoclonal Antibodies against SARSCoV-2 Nucleocapsid Protein, Science of The Total Environment, 908, 168154 (2024).
]Search in Google Scholar
[
Duraia E. shazly M., Adebiyi B.M., Das S., Magar H.S., Beall G.W., Hassan R.Y.A., Single-Step Synthesis of Carbon Nanotubes-Nickel Cobaltite (CNT-NiCo2O4) by Thermal Decomposition of Cyanide Compounds for Electrochemical Sensing Applications, Physica E: Low-Dimensional Systems and Nanostructures, 159, 115902 (2024).
]Search in Google Scholar
[
Eissa S., Zourob M., Development of a Low-Cost Cotton-Tipped Electrochemical Immunosensor for the Detection of SARS-CoV-2, Analytical Chemistry, 93, 1826-1833 (2021).
]Search in Google Scholar
[
Elgrishi N., Rountree K.J., McCarthy B.D., Rountree E.S., Eisenhart T.T., Dempsey J.L., A Practical Beginner’s Guide to Cyclic Voltammetry, Journal of Chemical Education, 95, 197-206 (2018).
]Search in Google Scholar
[
Enache T.A., Enculescu M., Bunea M.C., Zubillaga E.A., Tellechea E., Aresti M., Lasheras M., Asensio A.C., Diculescu V.C., Carbon Inks-Based Screen-Printed Electrodes for Qualitative Analysis of Amino Acids, International Journal of Molecular Sciences, 24, 1129 (2023).
]Search in Google Scholar
[
Ferrari A.G.M., Crapnell R.D., Banks C.E., Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety, Biosensors, 11, 291 (2021).
]Search in Google Scholar
[
Gao Y., Guo Y., He P., Liu Z., Chen Y., Enhanced Sensitivity and Selectivity of an Electrochemical Sensor for Real-Time Propofol Monitoring in Anesthesia, Alexandria Engineering Journal, 87, 47-55 (2024).
]Search in Google Scholar
[
Garkani Nejad F., Asadi M.H., Sheikhshoaie I., Dourandish Z., Zaimbashi R., Beitollahi H., Construction of Modified Screen-Printed Graphite Electrode for the Application in Electrochemical Detection of Sunset Yellow in Food Samples, Food and Chemical Toxicology, 166, 113243 (2022).
]Search in Google Scholar
[
Gong L., Zhang Y., Liu R., Liu Z., Jin S., Zhang L., Zhao T., Fa H. bao, Yin W., A Portable Electrochemical Room-Temperature Sensor Based on Flower-like Structure UIO-66-NH2@MoS2 Composite for Ammonia Detection, Sensors and Actuators B: Chemical, 413, 135868 (2024).
]Search in Google Scholar
[
Gong Z., Huang Y., Hu X., Zhang J., Chen Q., Chen H., Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods, Biosensors, 13, 1-34 (2023).
]Search in Google Scholar
[
Granero A.M., Fernández H., Zon M.A., Robledo S.N., Pierini G.D., Di Tocco A., Carrillo Palomino R.A., Maccio S., Riberi W.I., Arévalo F.J., Development of Electrochemical Sensors/Biosensors to Detect Natural and Synthetic Compounds Related to Agroalimentary, Environmental and Health Systems in Argentina. A Review of the Last Decade, Chemosensors, 9, 294 (2021).
]Search in Google Scholar
[
Guarín P., Cristancho J., Castillo J.J., Rapid Electrochemical Detection of Staphylococcus Aureus Based on Screen-Printed Gold Electrodes Modified with Cysteine and Guinea Grass (Panicum Maximum) Peroxidase, Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 44, 835-844 (2020).
]Search in Google Scholar
[
Guerrero S., Sánchez-Tirado E., Agüí L., González-Cortés A., Yáñez-Sedeño P., Pingarrón J.M., Development of an Electrochemical CCL5 Chemokine Immunoplatform for Rapid Diagnosis of Multiple Sclerosis, Biosensors, 12, 610 (2022).
]Search in Google Scholar
[
Gulati P., Singh A.K., Yadav A.K., Pasbola K., Pandey P., Sharma R., Thakar A., Solanki P., Nano-Modified Screen-Printed Electrodes-Based Electrochemical Immunosensors for Oral Cancer Biomarkers Detection in Undiluted Human Serum and Saliva Samples, Nanoscale Advances, 6, 705-721 (2023).
]Search in Google Scholar
[
Hamid Kargari S., Ahour F., Mahmoudian M., An Electrochemical Sensor for the Detection of Arsenic Using Nanocomposite-Modified Electrode, Scientific Reports, 13, 1-13 (2023).
]Search in Google Scholar
[
Hassan R.Y.A., Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives, Sensors, 22, 7539 (2022).
]Search in Google Scholar
[
Hassine A. Ben, Raouafi N., Moreira F.T.C., Novel Electrochemical Molecularly Imprinted Polymer-Based Biosensor for Tau Protein Detection, Chemosensors, 9, 1-14 (2021).
]Search in Google Scholar
[
Haššo M., Sarakhman O., Đurđić S., Stanković D., Švorc Ľ., Advanced Electrochemical Platform for Simple and Rapid Quantification of Tannic Acid in Beverages Using Batch Injection Analysis with Amperometric Detection, Journal of Electroanalytical Chemistry, 942, 117578 (2023).
]Search in Google Scholar
[
Hatala M., Gemeiner P., Hvojnik M., Mikula M., The Effect of the Ink Composition on the Performance of Carbon-Based Conductive Screen Printing Inks, Journal of Materials Science: Materials in Electronics, 30, 1034-1044 (2019).
]Search in Google Scholar
[
He P., Cao J., Ding H., Liu C., Neilson J., Li Z., Kinloch I.A., Derby B., Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics, ACS Applied Materials and Interfaces, 11, 32225-32234 (2019).
]Search in Google Scholar
[
Hilal H.A., Litunov S.N., Belkova S. V., Bochkareva S.S., Trifonova E.N., Technological Process Modeling for Ink Filling in the High Accuracy Screen Printer Mesh, Journal of Physics: Conference Series, 1441, 012095 (2020).
]Search in Google Scholar
[
Hu G., Kang J., Ng L.W.T., Zhu X., Howe R.C.T., Jones C.G., Hersam M.C., Hasan T., Functional Inks and Printing of Two-Dimensional Materials, Chemical Society Reviews, 47, 3265-3300 (2018).
]Search in Google Scholar
[
Hu Y., Bao F., Fu S., Feng S., Miao J., Miao P., Xu Y., A Facile Electrochemical Biosensor for Coronavirus RNA Assay with Silver Deposition, Talanta, 266, 125013 (2024).
]Search in Google Scholar
[
Hussein H.A., Kandeil A., Gomaa M., Hassan R.Y.A., Double-Antibody-Based Nano-Biosensing System for the Onsite Monitoring of SARS-CoV-2 Variants, Microsystems and Nanoengineering, 9, 1-16 (2023).
]Search in Google Scholar
[
Ibáñez-Redín G., Materon E.M., Furuta R.H.M., Wilson D., do Nascimento G.F., Melendez M.E., Carvalho A.L., Reis R.M., Oliveira O.N., Gonçalves D., Screen-Printed Electrodes Modified with Carbon Black and Polyelectrolyte Films for Determination of Cancer Marker Carbohydrate Antigen 19-9, Microchimica Acta, 187, 1-11 (2020).
]Search in Google Scholar
[
Irimes M.B., Pusta A., Cernat A., Feier B., Tertis M., Cristea C., Buzoianu A.D., Oprean R., Multiplexed Electrochemical Sensing Devices for Chronic Diseases Diagnosis and Monitoring, Journal of South American Earth Sciences, 172, 117560 (2024).
]Search in Google Scholar
[
Jiang D., Chu Z., Peng J., Jin W., Screen-Printed Biosensor Chips with Prussian Blue Nanocubes for the Detection of Physiological Analytes, Sensors and Actuators B: Chemical, 228, 679-687 (2016).
]Search in Google Scholar
[
Jiang Y., Chen X., Feng N., Miao P., Electrochemical Aptasensing of SARS-CoV-2 Based on Triangular Prism DNA Nanostructures and Dumbbell Hybridization Chain Reaction, Analytical Chemistry, 94, 14755-14760 (2022).
]Search in Google Scholar
[
Jofr L., Morentin J., Olariu M.A., Herrero R., Astanei G., Filip T.A., Burlica R., Improving Printability of Polytetrafluoroethylene ( PTFE ) with the Help of Plasma Pre-Treatment, Polymers, 15, 3348 (2023).
]Search in Google Scholar
[
Kandeepan Y., Subramaniyan P., Chen S.M., Kumaravel S., Selective and Sensitive Phenothiazine Sensor Based on Hexagonal CuO/Co3O4 Decorated on Reduced Graphene Oxide Catalyst, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 671, 131607 (2023).
]Search in Google Scholar
[
Kavčič U., Karlovits I., The Influence of Process Parameters of Screen-Printed Invasive Plant Paper Electrodes on Cyclic Voltammetry, Nordic Pulp and Paper Research Journal, 35, 299-307 (2020).
]Search in Google Scholar
[
Kavetskyy T., Smutok O., Goździuk-Gontarz M., Zgardzińska B., Kukhazh Y., Zubrytska K., Hoivanovych N., Šauša O., Demkiv O., Stasyuk N., Gonchar M., Ostrauskaite J., Kiv A., Katz E., Impact of Chemical Composition of Soybean Oil and Vanillin-Based Photocross-Linked Polymers on Parameters of Electrochemical Biosensors, Microchemical Journal, 201, 110618 (2024).
]Search in Google Scholar
[
Keramari V., Karastogianni S., Girousi S., New Prospects in the Electroanalysis of Heavy Metal Ions (Cd, Pb, Zn, Cu): Development and Application of Novel Electrode Surfaces, Methods and Protocols, 6, 60 (2023).
]Search in Google Scholar
[
Khan S., Ali S., Khan A., Wang B., Al-Ansari T., Bermak A., Substrate Treatment Evaluation and Their Impact on Printing Results for Wearable Electronics, Frontiers in Electronics, 2, 1-10 (2021).
]Search in Google Scholar
[
Khanmohammadi A., Jalili Ghazizadeh A., Hashemi P., Afkhami A., Arduini F., Bagheri H., An Overview to Electrochemical Biosensors and Sensors for the Detection of Environmental Contaminants, Journal of the Iranian Chemical Society, 17, 2429-2447 (2020).
]Search in Google Scholar
[
Kilic N.M., Singh S., Keles G., Cinti S., Kurbanoglu S., Odaci D., Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors, Biosensors, 13, 622 (2023).
]Search in Google Scholar
[
Kongkaew S., Kanatharana P., Thavarungkul P., Limbut W., Studying the Preparation, Electrochemical Performance Testing, Comparison and Application of a Cost-Effective Flexible Graphene Working Electrode, Journal of Colloid and Interface Science, 583, 487-498 (2021).
]Search in Google Scholar
[
Kozak J., Tyszczuk-Rotko K., Wójciak M., Sowa I., Rotko M., Electrochemically Pretreated Sensor Based on Screen-Printed Carbon Modified with Pb Nanoparticles for Determination of Testosterone, Materials, 15, 4948 (2022).
]Search in Google Scholar
[
Krammer O., Dušek K., Numerical Investigation on the Effect of the Printing Force and Squeegee Geometry on Stencil Printing, Journal of Manufacturing Processes, 45, 188-193 (2019).
]Search in Google Scholar
[
Kumar P., Rajan R., Upadhyaya K., Behl G., Xiang X.X., Huo P., Liu B., Metal Oxide Nanomaterials Based Electrochemical and Optical Biosensors for Biomedical Applications: Recent Advances and Future Prospectives, Environmental Research, 247, 118002 (2024).
]Search in Google Scholar
[
Kusnin N., Yusof N.A., Mutalib N.A.A., Mohammad F., Abdullah J., Sabri S., Mustafa S., Saman A.F.M., Faudzi F.N.M., Soleiman A.A., Enhanced Electrochemical Conductivity of Surface-Coated Gold Nanoparticles/Copper Nanowires onto Screen-Printed Gold Electrode, Coatings, 12, 622 (2022).
]Search in Google Scholar
[
Land K.J., Boeras D.I., Chen X.S., Ramsay A.R., Peeling R.W., REASSURED Diagnostics to Inform Disease Control Strategies, Strengthen Health Systems and Improve Patient Outcomes, Nature Microbiology, 4, 46-54 (2019).
]Search in Google Scholar
[
Lerdsri J., Upan J., Jakmunee J., Nafion Mixed Carbon Nanotube Modified Screen-Printed Carbon Electrode as a Disposable Electrochemical Sensor for Quantification of Amitraz in Honey and Longan Samples, Electrochimica Acta, 410, 140050 (2022).
]Search in Google Scholar
[
Li F., Xin L., Wang J., Chen W., Platinum Nanoparticles-Based Electrochemical H2O2 Sensor for Rapid Antibiotic Susceptibility Testing, Talanta, 281, 126835 (2025).
]Search in Google Scholar
[
Li H., Wang S., Dong X., Ding X., Sun Y., Tang H., Lu Y., Tang Y., Wu X., Recent Advances on Ink-Based Printing Techniques for Triboelectric Nanogenerators: Printable Inks, Printing Technologies and Applications, Nano Energy, 101, 107585 (2022).
]Search in Google Scholar
[
Liu L., Shen Z., Zhang X., Ma H., Highly Conductive Graphene/Carbon Black Screen Printing Inks for Flexible Electronics, Journal of Colloid and Interface Science, 582, 12-21 (2021).
]Search in Google Scholar
[
Long Y., Zhan Y., Hong S., Mahmud S., Liu H., Screen-Printed Carbon Electrodes Modified with Poly(Amino Acids) for the Simultaneous Detection of Vitamin C and Paracetamol, ChemistrySelect, 9, e202303369 (2024).
]Search in Google Scholar
[
Malla P., Liao H.P., Liu C.H., Wu W.C., Electrochemical Immunoassay for Serum Parathyroid Hormone Using Screen-Printed Carbon Electrode and Magnetic Beads, Journal of Electroanalytical Chemistry, 895, 115463 (2021).
]Search in Google Scholar
[
Marra F., Minutillo S., Tamburrano A., Sarto M.S., Production and Characterization of Graphene Nanoplatelet-Based Ink for Smart Textile Strain Sensors via Screen Printing Technique, Materials and Design, 198, 109306 (2021).
]Search in Google Scholar
[
Martins P., Pereira N., Lima A.C., Garcia A., Mendes-Filipe C., Policia R., Correia V., Lanceros-Mendez S., Advances in Printing and Electronics: From Engagement to Commitment, Advanced Functional Materials, 33, 2213744 (2023).
]Search in Google Scholar
[
Mashat Z.B.A., Abdullah F., Wahab A.A., Shakhih M.F.M., Roslan A.S., Development Ofnon-Enzymatic Screen-Printed Carbon Electrode Sensor for Glucose Using Cyclic Voltammetry, Environmental and Toxicology Management, 2, 14-20 (2022).
]Search in Google Scholar
[
Mazzaracchio V., Bagheri N., Chiara F., Fiore L., Moscone D., Roggero S., Arduini F., A Smart Paper-Based Electrochemical Sensor for Reliable Detection of Iron Ions in Serum, Analytical and Bioanalytical Chemistry, 415, 1149-1157 (2023).
]Search in Google Scholar
[
Mei Y., He C., Zeng W., Luo Y., Liu C., Yang M., Kuang Y., Lin X., Huang Q., Electrochemical Biosensors for Foodborne Pathogens Detection Based on Carbon Nanomaterials: Recent Advances and Challenges, Food and Bioprocess Technology, 15, 498-513 (2022).
]Search in Google Scholar
[
Mendez-Rossal H.R., Wallner G.M., Printability and Properties of Conductive Inks on Primer-Coated Surfaces, International Journal of Polymer Science, 2019, 3874181 (2019).
]Search in Google Scholar
[
Mincu N.B., Lazar V., Stan D., Mihailescu C.M., Iosub R., Mateescu A.L., Screen-Printed Electrodes (SPE) for in Vitro Diagnostic Purpose, Diagnostics, 10, 1-21 (2020).
]Search in Google Scholar
[
Mohammadi S., Taher M.A., Beitollahi H., Treated Screen Printed Electrodes Based on Electrochemically Reduced Graphene Nanoribbons for the Sensitive Voltammetric Determination of Dopamine in the Presence of Uric Acid, Electroanalysis, 32, 2036-2044 (2020).
]Search in Google Scholar
[
Mohammadi S.Z., Asadollahzadeh H., Emambakhsh F., Sensitive Electrochemical Determination of Sudan I in Food Products by Using Modified-Screen Printed Electrode, Journal of Materials Science: Materials in Electronics, 34, 1-11 (2023).
]Search in Google Scholar
[
Moro G., Ferrari L., Angelini A., Polo F., An Impedimetric Biosensing Strategy Based on BicyclicPeptides as Bioreceptors for Monitoring H-UPA Cancer Biomarkers, Chemosensors, 11, 234 (2023).
]Search in Google Scholar
[
Moru S., Sunil Kumar V., Kummari S., Yugender Goud K., A Disposable Screen Printed Electrodes with Hexagonal Ni(OH)2 Nanoplates Embedded Chitosan Layer for the Detection of Depression Biomarker, Micromachines, 14, 146 (2023).
]Search in Google Scholar
[
Murilo Alves G., Soares Castro A., McCord B.R., de Oliveira M.F., MDMA Electrochemical Determination and Behavior at Carbon Screen-Printed Electrodes: Cheap Tools for Forensic Applications, Electroanalysis, 33, 635-642 (2021).
]Search in Google Scholar
[
Naghian E., Marzi Khosrowshahi E., Sohouli E., Ahmadi F., Rahimi-Nasrabadi M., Safarifard V., A New Electrochemical Sensor for the Detection of Fentanyl Lethal Drug by a Screen-Printed Carbon Electrode Modified with the Open-Ended Channels of Zn(Ii)-MOF, New Journal of Chemistry, 44, 9271-9277 (2020).
]Search in Google Scholar
[
Nasimi H., Madsen J.S., Zedan A.H., Malmendal A., Osther P.J.S., Alatraktchi F.A., Identification of Early Stage and Metastatic Prostate Cancer Using Electrochemical Detection of Beta-2-Microglobulin in Urine Samples from Patients, Scientific Reports, 13, 1-10 (2023).
]Search in Google Scholar
[
Nasrollahpour H., Khalilzadeh B., Hasanzadeh M., Rahbarghazi R., Estrela P., Naseri A., Tasoglu S., Sillanpää M., Nanotechnology-Based Electrochemical Biosensors for Monitoring Breast Cancer Biomarkers, Medicinal Research Reviews, 43, 464-569 (2023).
]Search in Google Scholar
[
Nomura K. ichi, Ushijima H., Nagase K., Ikedo H., Mitsui R., Takahashi S., Nakajima S. ichiro, Iwata S., Fine Electrode Pattern Formation by Screen-Offset Printing Technique, 2014 International Conference on Electronics Packaging (ICEP), 2014. Toyama, Japan, pp. 275-278.
]Search in Google Scholar
[
O’Sullivan B., Patella B., Daly R., Seymour I., Robinson C., Lovera P., Rohan J., Inguanta R., O’Riordan A., A Simulation and Experimental Study of Electrochemical PH Control at Gold Interdigitated Electrode Arrays, Electrochimica Acta, 395, 139113 (2021).
]Search in Google Scholar
[
Otoo J.A., Schlappi T.S., REASSURED Multiplex Diagnostics: A Critical Review and Forecast, Biosensors, 12, 124 (2022).
]Search in Google Scholar
[
Paimard G., Ghasali E., Baeza M., Screen-Printed Electrodes: Fabrication, Modification, and Biosensing Applications, Chemosensors, 11, 113 (2023).
]Search in Google Scholar
[
Pandey P.C., Yadav H.P., Shukla S., Narayan R.J., Electrochemical Sensing and Removal of Cesium from Water Using Prussian Blue Nanoparticle-Modified Screen-Printed Electrodes, Chemosensors, 9, 253 (2021).
]Search in Google Scholar
[
Panhwar S., Ilhan H., Hassan S.S., Zengin A., Boyacı I.H., Tamer U., Dual Responsive Disposable Electrode for the Enumeration of Escherichia Coli in Whole Blood, Electroanalysis, 32, 2244-2252 (2020).
]Search in Google Scholar
[
Park S., Kim H., Kim J.H., Yeo W.H., Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics, Materials, 13, 1-34 (2020).
]Search in Google Scholar
[
Parrilla M., Slosse A., Van Echelpoel R., Montiel N.F., Langley A.R., Van Durme F., De Wael K., Rapid On-Site Detection of Illicit Drugs in Smuggled Samples with a Portable Electrochemical Device, Chemosensors, 10, 108 (2022a).
]Search in Google Scholar
[
Parrilla M., Vanhooydonck A., Watts R., De Wael K., Wearable Wristband-Based Electrochemical Sensor for the Detection of Phenylalanine in Biofluids, Biosensors and Bioelectronics, 197, 113764 (2022b).
]Search in Google Scholar
[
Perdomo S.A., De la Paz E., Del Caño R., Seker S., Saha T., Wang J., Jaramillo-Botero A., Non-Invasive in-Vivo Glucose-Based Stress Monitoring in Plants, Biosensors and Bioelectronics, 231, 115300 (2023).
]Search in Google Scholar
[
Phair J.W., Lundberg M., Kaiser A., Leveling and Thixotropic Characteristics of Concentrated Zirconia Inks for Screen-Printing, Rheologica Acta, 48, 121-133 (2009).
]Search in Google Scholar
[
Pierini G.D., Maccio S.A., Robledo S.N., Ferrari A.G.M., Banks C.E., Fernández H., Zon M.A., Screen-Printed Electrochemical-Based Sensor for Taxifolin Determination in Edible Peanut Oils, Microchemical Journal, 159, 105442 (2020).
]Search in Google Scholar
[
Potts S.J., Phillips C., Claypole T., Jewell E., The Effect of Carbon Ink Rheology on Ink Separation Mechanisms in Screen-Printing, Coatings, 10, 1-17 (2020a).
]Search in Google Scholar
[
Potts S.J., Phillips C., Jewell E., Clifford B., Lau Y.C., Claypole T., High-Speed Imaging the Effect of Snap-off Distance and Squeegee Speed on the Ink Transfer Mechanism of Screen-Printed Carbon Pastes, Journal of Coatings Technology and Research, 17, 447-459 (2020b).
]Search in Google Scholar
[
Rahmati Z., Roushani M., Hosseini H., Choobin H., Electrochemical Immunosensor with Cu2O Nanocube Coating for Detection of SARS-CoV-2 Spike Protein, Microchimica Acta, 188, 105 (2021).
]Search in Google Scholar
[
Rao C.H., Avinash K., Varaprasad B.K.S.V.L., Goel S., A Review on Printed Electronics with Digital 3D Printing: Fabrication Techniques, Materials, Challenges and Future Opportunities, Journal of Electronic Materials, 51, 2747-2765 (2022).
]Search in Google Scholar
[
Reinhardt K., Hofmann N., Eberstein M., The Importance of Shear Thinning, Thixotropic and Viscoelastic Properties of Thick Film Pastes to Predict Effects on Printing Performance, 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition, 2017, Warsaw, Poland, pp. 1–7.
]Search in Google Scholar
[
Riu J., Giussani B., Electrochemical Biosensors for the Detection of Pathogenic Bacteria in Food, TrAC - Trends in Analytical Chemistry, 126, 115863 (2020).
]Search in Google Scholar
[
Romih T., Konjević I., Žibret L., Fazarinc I., Beltram A., Majer D., Finšgar M., Hočevar S.B., The Effect of Preconditioning Strategies on the Adsorption of Model Proteins onto Screen-Printed Carbon Electrodes, Sensors, 22, 1-14 (2022).
]Search in Google Scholar
[
Saputra H.A., Electrochemical Sensors: Basic Principles, Engineering, and State of the Art, Monatshefte fur Chemie, 154, 1083-1100 (2023).
]Search in Google Scholar
[
Seitak A., Luo S., Cai N., Liao K., Pappa A.M., Lee S., Chan V., Emergence of MXene-Based Electrochemical Biosensors for Biomolecule and Pathogen Detection, Sensors and Actuators Reports, 6, 100175 (2023).
]Search in Google Scholar
[
Şen M., Oğuz M., Avcı İ., Non-Toxic Flexible Screen-Printed MWCNT-Based Electrodes for Non-Invasive Biomedical Applications, Talanta, 268, 125341 (2024).
]Search in Google Scholar
[
Sher M., Faheem A., Asghar W., Cinti S., Nano-Engineered Screen-Printed Electrodes: A Dynamic Tool for Detection of Viruses, TrAC - Trends in Analytical Chemistry, 143, 116374 (2021).
]Search in Google Scholar
[
Shi Z., Lu Y., Chen Z., Cheng C., Xu J., Zhang Q., Yan Z., Luo Z., Liu Q., Electrochemical Non-Enzymatic Sensing of Glycoside Toxins by Boronic Acid Functionalized Nano-Composites on Screen-Printed Electrode, Sensors and Actuators, B: Chemical, 329, 129197 (2021).
]Search in Google Scholar
[
Shitanda I., Komoda M., Hoshi Y., Itagaki M., Screen-Printed Paper-Based Three-Electrode System with Long-Term Stable and Instantaneously Usable Reference Electrode, Chemistry Letters, 47, 1502-1504 (2018).
]Search in Google Scholar
[
Shitanda I., Miyazaki K., Loew N., Esaka R., Hoshi Y., Itagaki M., A Screen-Printed Three-Electrode-Type Sticker Device with an Accurate Liquid Junction-Type Reference Electrode, Chemical Communications, 57, 2875-2878 (2021).
]Search in Google Scholar
[
Silva R.M., Dias da Silva A., Camargo J.R., Santos de Castro B., Meireles L.M., Soares Silva P., Janegitz B.C., Silva T.A., Carbon Nanomaterials-Based Screen-Printed Electrodes for Sensing Applications, Biosensors, 13, 453 (2023).
]Search in Google Scholar
[
Singh N., Dkhar D.S., Chandra P., Azad U.P., Nanobiosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis, Biosensors, 13, 166 (2023).
]Search in Google Scholar
[
Song X., Fredj Z., Zheng Y., Zhang H., Rong G., Bian S., Sawan M., Biosensors for Waterborne Virus Detection: Challenges and Strategies, Journal of Pharmaceutical Analysis, 13, 1252-1268 (2023).
]Search in Google Scholar
[
Suresh R.R., Lakshmanakumar M., Arockia Jayalatha J.B.B., Rajan K.S., Sethuraman S., Krishnan U.M., Rayappan J.B.B., Fabrication of Screen-Printed Electrodes: Opportunities and Challenges, Journal of Materials Science, 56, 8951-9006 (2021).
]Search in Google Scholar
[
Tajik S., Beitollahi H., Mohammadi S.Z., Azimzadeh M., Zhang K., Van Le Q., Yamauchi Y., Jang H.W., Shokouhimehr M., Recent Developments in Electrochemical Sensors for Detecting Hydrazine with Different Modified Electrodes, RSC Advances, 10, 30481-30498 (2020).
]Search in Google Scholar
[
Talbi M., Al-Hamry A., Teixeira P.R., Paterno L.G., Ali M. Ben, Kanoun O., Enhanced Nitrite Detection by a Carbon Screen Printed Electrode Modified with Photochemically-Made AuNPs, Chemosensors, 10, 40 (2022).
]Search in Google Scholar
[
Torres-Rivero, Karina, Torralba-Cadena, Lourdes, Espriu-Gascon, Alexandra, Casas, Ignasi, Bastos-Arieta, Julio, Florido A., Strategies for Surface Modification with Ag-Shaped Nanoparticles : Electrocatalytic Enhancement of Screen-Printed Electrodes for the Detection Of, Sensors, 19, 1-14 (2019).
]Search in Google Scholar
[
Torres‐Rivero K., Florido A., Bastos‐Arrieta J., Recent Trends in the Improvement of the Electrochemical Response of Screen‐printed Electrodes by Their Modification with Shaped Metal Nanoparticles, Sensors, 21, 2596 (2021).
]Search in Google Scholar
[
Trachioti M.G., Lazanas A.C., Prodromidis M.I., Shedding Light on the Calculation of Electrode Electroactive Area and Heterogeneous Electron Transfer Rate Constants at Graphite Screen-Printed Electrodes, Microchimica Acta, 190, 1-14 (2023).
]Search in Google Scholar
[
Trandabat A., Arcire A., Postolache O., Mandoc R.L., Vasilache N., A Study on Of-the-Shelf Screen-Printed Carbon Electrodes as Nitrogenous Species Detectors, International Symposium “THE ENVIRONMENT AND THE INDUSTRY”, E-SIMI 2021, 2021, pp. 15–16.
]Search in Google Scholar
[
Trandabat A., Arcide A., Mandoc R.L., Aradoaiei M., Enhancement of a ZnO/PANI Screen-Printed Carbon Electrode with Gold Nanoparticles for Carbon Monoxide Sensing, International Symposium “THE ENVIRONMENT AND THE INDUSTRY”, E-SIMI 2022, 2022a, pp. 73–74.
]Search in Google Scholar
[
Trandabat A., Arcire A., Patrascu G., Saridache A.D.N., Gheorghian G.M., Hogas I., Schreiner C.M., A Non-Enzymatic Chronoamperometric Glucose Sensor Based on Screen-Printed Carbon Electrode (SPCE) Modified with Maghemite Magnetic Nanoparticles via Physical Vapour Deposition (PVD), 2022 International Conference and Exposition on Electrical and Power Engineering (EPE), 2022b, Iași, Romania, pp. 269-274.
]Search in Google Scholar
[
Trandabat A., Arcire A., Ciobanu R.C., Plopa O., Aradoaei M., Olteanu A., Mona M.A.A., Design and Modeling Considerations for Developing a Millimolar Oxalic Acid Detection Sensor Based on Screen-Printed Carbon Electrode and Methilbenzenpirol, 2022 International Conference and Exposition on Electrical and Power Engineering (EPE), 2022c, Iași, Romania, pp. 245-252.
]Search in Google Scholar
[
Truta F., Garcia Cruz A., Tertis M., Zaleski C., Adamu G., Allcock N.S., Suciu M., Ștefan M.G., Kiss B., Piletska E., De Wael K., Piletsky S.A., Cristea C., NanoMIPs-Based Electrochemical Sensors for Selective Detection of Amphetamine, Microchemical Journal, 191, 108821 (2023).
]Search in Google Scholar
[
Veenuttranon K., Kaewpradub K., Jeerapan I., Screen-Printable Functional Nanomaterials for Flexible and Wearable Single-Enzyme-Based Energy-Harvesting and Self-Powered Biosensing Devices, Nano-Micro Letters, 15, 1-16 (2023).
]Search in Google Scholar
[
Venkateswara Raju C., Hwan Cho C., Mohana Rani G., Manju V., Umapathi R., Suk Huh Y., Pil Park J., Emerging Insights into the Use of Carbon-Based Nanomaterials for the Electrochemical Detection of Heavy Metal Ions, Coordination Chemistry Reviews, 476, 214920 (2023).
]Search in Google Scholar
[
Wang J., Xu S., Sun P., Du H., Wang L., Enhanced Electrochemical Performance of Screen-Printed Carbon Electrode by RF-Plasma-Assisted Polypyrrole Modification, Journal of Materials Science: Materials in Electronics, 33, 19923-19936 (2022a).
]Search in Google Scholar
[
Wang R.F., Wang R., Modification of Polyacrylonitrile-Derived Carbon Nanofibers and Bacteriophages on Screen-Printed Electrodes: A Portable Electrochemical Biosensor for Rapid Detection of Escherichia Coli, Bioelectrochemistry, 148, 108229 (2022b).
]Search in Google Scholar
[
Wang W., Wang X., Cheng N., Luo Y., Lin Y., Xu W., Du D., Recent Advances in Nanomaterials-Based Electrochemical (Bio)Sensors for Pesticides Detection, TrAC - Trends in Analytical Chemistry, 132, 116041 (2020).
]Search in Google Scholar
[
Wei L., Alias Y., Krisma P., Meng P., Recent Advances in Amino Acid-Based Electrode Fabrication Strategies for Enhanced Electrochemical Detection of Metal Ions, Trends in Environmental Analytical Chemistry, 41, e00225 (2024).
]Search in Google Scholar
[
Wisitsoraat A., Mensing J.P., Karuwan C., Sriprachuabwong C., Jaruwongrungsee K., Phokharatkul D., Daniels T.M., Liewhiran C., Tuantranont A., Printed Organo-Functionalized Graphene for Biosensing Applications, Biosensors and Bioelectronics, 87, 7-17 (2017).
]Search in Google Scholar
[
Wu J., Liu H., Chen W., Ma B., Ju H., Device Integration of Electrochemical Biosensors, Nature Reviews Bioengineering, 1, 346-360 (2023).
]Search in Google Scholar
[
Xu C., Willenbacher N., How Rheological Properties Affect Fine-Line Screen Printing of Pastes: A Combined Rheological and High-Speed Video Imaging Study, Journal of Coatings Technology and Research, 15, 1401-1412 (2018).
]Search in Google Scholar
[
Yoon S., Kim H.K., Cost-Effective Stretchable Ag Nanoparticles Electrodes Fabrication by Screen Printing for Wearable Strain Sensors, Surface and Coatings Technology, 384, 125308 (2020).
]Search in Google Scholar
[
Yuksel M., Luo W., McCloy B., Mills J., Kayaharman M., Yeow J.T.W., A Precise and Rapid Early Pregnancy Test: Development of a Novel and Fully Automated Electrochemical Point-of-Care Biosensor for Human Urine Samples, Talanta, 254, 124156 (2023).
]Search in Google Scholar
[
Zavanelli N., Yeo W.H., Advances in Screen Printing of Conductive Nanomaterials for Stretchable Electronics, ACS Omega, 6, 9344-9351 (2021).
]Search in Google Scholar
[
Zhang J., Ahmadi M., Fargas G., Perinka N., Reguera J., Lanceros-Méndez S., Llanes L., Jiménez-Piqué E., Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies, Metals, 12, 234 (2022).
]Search in Google Scholar
[
Zheng H., Guo Z., Zhu W., Li D., Pu Z., Electrode Manufacturing Based on Printing: A Mini Review, International Journal of Advanced Manufacturing Technology, 128, 2813-2824 (2023).
]Search in Google Scholar
[
Zhu W., Yu H., Pu Z., Guo Z., Zheng H., Li C., Zhang X., Li J., Li D., Effect of Interstitial Fluid PH on Transdermal Glucose Extraction by Reverse Iontophoresis, Biosensors and Bioelectronics, 235, 115406 (2023).
]Search in Google Scholar