Open Access

Thermodynamic Limitations on the Natural Emergence of Long Chain Molecules: Implications for Origin of Life

,  and   
Jul 09, 2025

Cite
Download Cover

Benner SA. Paradoxes in the origin of life. Origins of Life and Evolution of Biospheres. 2014;44: 339–343. doi: 10.1007/s11084-014-9379-0 BennerSA Paradoxes in the origin of life Origins of Life and Evolution of Biospheres 2014 44 339 343 10.1007/s11084-014-9379-0 Open DOISearch in Google Scholar

Lee H-E, Russell M, Nakamura R. Water chemistry at the nanoscale: clues for resolving the “water paradox” underlying the emergence of life. ChemistryEurope. 2024;2: e202400038. (7pp). doi: 10.1002/ceur.202400038 LeeH-E RussellM NakamuraR Water chemistry at the nanoscale: clues for resolving the “water paradox” underlying the emergence of life ChemistryEurope 2024 2 e202400038 (7pp). 10.1002/ceur.202400038 Open DOISearch in Google Scholar

Bernhardt HS. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biology Direct. 2012;7: 23. doi: 10.1186/1745-6150-7-23 BernhardtHS The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others) Biology Direct 2012 7 23 10.1186/1745-6150-7-23 Open DOISearch in Google Scholar

Ross DS, Deamer D. Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life (Basel, Switzerland). 2016;6: 28. (12pp). doi: 10.3390/life6030028 RossDS DeamerD Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis Life (Basel, Switzerland) 2016 6 28 (12pp). 10.3390/life6030028 Open DOISearch in Google Scholar

Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nature Reviews Chemistry. 2024;8: 817–832. doi: 10.1038/s41570-024-00648-5 WhitakerD PownerMW On the aqueous origins of the condensation polymers of life Nature Reviews Chemistry 2024 8 817 832 10.1038/s41570-024-00648-5 Open DOISearch in Google Scholar

Ianeselli A, Salditt A, Mast C, Ercolano B, Kufner CL, Scheu B, et al. Physical non-equilibria for prebiotic nucleic acid chemistry. Nature Reviews Physics. 2023;5: 185–195. doi: 10.1038/s42254-022-00550-3 IaneselliA SaldittA MastC ErcolanoB KufnerCL ScheuB Physical non-equilibria for prebiotic nucleic acid chemistry Nature Reviews Physics 2023 5 185 195 10.1038/s42254-022-00550-3 Open DOISearch in Google Scholar

Song X, Simonis P, Deamer D, Zare RN. Wet-dry cycles cause nucleic acid monomers to polymerize into long chains. Proceedings of the National Academy of Sciences of the United States of America. 2024;121: e2412784121. doi: 10.1073/pnas.2412784121 SongX SimonisP DeamerD ZareRN Wet-dry cycles cause nucleic acid monomers to polymerize into long chains Proceedings of the National Academy of Sciences of the United States of America 2024 121 e2412784121 10.1073/pnas.2412784121 Open DOISearch in Google Scholar

Eigen M, Schuster P. The hypercycle. Die Naturwissenschaften. 1978;65: 341–369. doi: 10.1007/bf00439699 EigenM SchusterP The hypercycle Die Naturwissenschaften 1978 65 341 369 10.1007/bf00439699 Open DOISearch in Google Scholar

Riggi VS, Bruce Watson E, Steele A, Rogers KL. Mineral-mediated oligoribonucleotide condensation: broadening the scope of prebiotic possibilities on the early earth. Life (Basel, Switzerland). 2023;13: 1899. (15pp). doi: 10.3390/life13091899 RiggiVS Bruce WatsonE SteeleA RogersKL Mineral-mediated oligoribonucleotide condensation: broadening the scope of prebiotic possibilities on the early earth Life (Basel, Switzerland) 2023 13 1899 (15pp). 10.3390/life13091899 Open DOISearch in Google Scholar

Edri R, Fisher S, Menor-Salvan C, Williams LD, Frenkel-Pinter M. Assembly-driven protection from hydrolysis as key selective force during chemical evolution. FEBS Letters. 2023;597: 2879–2896. doi: 10.1002/1873-3468.14766 EdriR FisherS Menor-SalvanC WilliamsLD Frenkel-PinterM Assembly-driven protection from hydrolysis as key selective force during chemical evolution FEBS Letters 2023 597 2879 2896 10.1002/1873-3468.14766 Open DOISearch in Google Scholar

Miller SL. A production of amino acids under possible primitive earth conditions. Science (New York, N.Y.). 1953;117: 528–529. doi: 10.1126/science.117.3046.528 MillerSL A production of amino acids under possible primitive earth conditions Science (New York, N.Y.) 1953 117 528 529 10.1126/science.117.3046.528 Open DOISearch in Google Scholar

Okamoto R, Haraguchi T, Nomura K, Maki Y, Izumi M, Kajihara Y. Regioselective α-peptide bond formation through the oxidation of amino thioacids. Biochemistry. 2019;58: 1672–1678. doi: 10.1021/acs.biochem.8b01239 OkamotoR HaraguchiT NomuraK MakiY IzumiM KajiharaY Regioselective α-peptide bond formation through the oxidation of amino thioacids Biochemistry 2019 58 1672 1678 10.1021/acs.biochem.8b01239 Open DOISearch in Google Scholar

Du X, Cui J, Han Y, Li F, Liang H, Jin J, et al. Effects of monomer purity on AA-BB polycondensation: a Monte Carlo study. Polymer Bulletin. 2024;81: 6423–6436. doi: 10.1007/s00289-023-05015-w DuX CuiJ HanY LiF LiangH JinJ Effects of monomer purity on AA-BB polycondensation: a Monte Carlo study Polymer Bulletin 2024 81 6423 6436 10.1007/s00289-023-05015-w Open DOISearch in Google Scholar

Orgel LE. The origins of life: molecules and natural selection. London: Chapman & Hall; 1973. OrgelLE The origins of life: molecules and natural selection London Chapman & Hall 1973 Search in Google Scholar

Rich A. On the problems of evolution and biochemical information transfer. In: Kasha M, Pullman B. (eds.) Horizons in biochemistry: Albert Szent-Györgyi dedicatory volume. (Cambridge, Mass.) is an imprint of Elsevier: Academic Press; 1962. p.103–125. RichA On the problems of evolution and biochemical information transfer In: KashaM PullmanB. (eds.) Horizons in biochemistry: Albert Szent-Györgyi dedicatory volume (Cambridge, Mass.) is an imprint of Elsevier Academic Press 1962 103 125 Search in Google Scholar

Woese C. The genetic code: the molecular basis for genetic expression. London: Harper & Row; 1967. WoeseC The genetic code: the molecular basis for genetic expression London Harper & Row 1967 Search in Google Scholar

Orgel LE. Evolution of the genetic apparatus. Journal of Molecular Biology. 1968;38: 381–393. doi: 10.1016/0022-2836(68)90393-8 OrgelLE Evolution of the genetic apparatus Journal of Molecular Biology 1968 38 381 393 10.1016/0022-2836(68)90393-8 Open DOISearch in Google Scholar

Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, et al. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife. 2024;12: RP90316. (27pp). doi: 10.7554/eLife.90316.3 ZhangK EldinP CieslaJH BriantL LentiniJM RamosJ Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease eLife 2024 12 RP90316 (27pp). 10.7554/eLife.90316.3 Open DOISearch in Google Scholar

Benner SA, Kim H-J, Carrigan MA. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Accounts of Chemical Research. 2012;45: 2025–2034. doi: 10.1021/ar200332w BennerSA KimH-J CarriganMA Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA Accounts of Chemical Research 2012 45 2025 2034 10.1021/ar200332w Open DOISearch in Google Scholar

Wang C, Liu H. Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR. Scientific Reports. 2022;12: 7259. (11pp). doi: 10.1038/s41598-022-11339-w WangC LiuH Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR Scientific Reports 2022 12 7259 (11pp). 10.1038/s41598-022-11339-w Open DOISearch in Google Scholar

Kahne D, Still WC. Hydrolysis of a peptide bond in neutral water. Journal of the American Chemical Society. 1988;10: 7529–7534. doi: 10.1021/ja00230a041 KahneD StillWC Hydrolysis of a peptide bond in neutral water Journal of the American Chemical Society 1988 10 7529 7534 10.1021/ja00230a041 Open DOISearch in Google Scholar

Williams DA, Hartquist TW. The cosmic-chemical bond. London: Royal Society of Chemistry; 2013. doi: 10.1039/9781839169144 WilliamsDA HartquistTW The cosmic-chemical bond London Royal Society of Chemistry 2013 10.1039/9781839169144 Open DOISearch in Google Scholar

Howard KT, Bailey MJ, Berhanu D, Bland PA, Cressey G, Howard LE, et al. Biomass preservation in distal impact melt ejecta. Nature Geoscience. 2013;6: 1018–1022. doi: 10.1038/ngeo1996 HowardKT BaileyMJ BerhanuD BlandPA CresseyG HowardLE Biomass preservation in distal impact melt ejecta Nature Geoscience 2013 6 1018 1022 10.1038/ngeo1996 Open DOISearch in Google Scholar

Benner SA, Bell EA, Biondi E, Brasser R, Carell T, Kim H-J, et al. When did life likely emerge on earth in an RNA-first process? ChemSystemsChem. 2020;2: e1900035. doi: 10.1002/syst.201900035 BennerSA BellEA BiondiE BrasserR CarellT KimH-J When did life likely emerge on earth in an RNA-first process? ChemSystemsChem 2020 2 e1900035 10.1002/syst.201900035 Open DOISearch in Google Scholar

Cronin JR, Pizzarello S. Amino acid enantiomer excesses in meteorites: origin and significance. Advances in Space Research. 1999;23: 293–299. doi: 10.1016/S0273-1177(99)00050-2 CroninJR PizzarelloS Amino acid enantiomer excesses in meteorites: origin and significance Advances in Space Research 1999 23 293 299 10.1016/S0273-1177(99)00050-2 Open DOISearch in Google Scholar

Parker MC, Jeynes C. A relativistic entropic Hamiltonian–Lagrangian approach to the entropy production of spiral galaxies in hyperbolic spacetime. Universe. 2021;7: 325. (15pp). doi: 10.3390/universe7090325 ParkerMC JeynesC A relativistic entropic Hamiltonian–Lagrangian approach to the entropy production of spiral galaxies in hyperbolic spacetime Universe 2021 7 325 (15pp). 10.3390/universe7090325 Open DOISearch in Google Scholar

Parker MC, Jeynes C. Maximum entropy (most likely) double helical and double logarithmic spiral trajectories in space-time. Scientific Reports. 2019;9: 10779. doi: 10.1038/s41598-019-46765-w ParkerMC JeynesC Maximum entropy (most likely) double helical and double logarithmic spiral trajectories in space-time Scientific Reports 2019 9 10779 10.1038/s41598-019-46765-w Open DOISearch in Google Scholar

Parker MC, Jeynes C. ab initio thermodynamics calculation of beta decay rates. Annalen Der Physik. 2023;535: 2300259. (11pp). doi: 10.1002/andp.202300259 ParkerMC JeynesC ab initio thermodynamics calculation of beta decay rates Annalen Der Physik 2023 535 2300259 (11pp). 10.1002/andp.202300259 Open DOISearch in Google Scholar

Auffray C, Nottale L. Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. Progress in Biophysics and Molecular Biology. 2008;97: 79–114. doi: 10.1016/j.pbiomolbio.2007.09.002 AuffrayC NottaleL Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws Progress in Biophysics and Molecular Biology 2008 97 79 114 10.1016/j.pbiomolbio.2007.09.002 Open DOISearch in Google Scholar

Parker MC, Jeynes C. A maximum entropy resolution to the wine/water paradox. Entropy (Basel, Switzerland). 2023;25: 1242. (10pp). doi: 10.3390/e25081242 ParkerMC JeynesC A maximum entropy resolution to the wine/water paradox Entropy (Basel, Switzerland) 2023 25 1242 (10pp). 10.3390/e25081242 Open DOISearch in Google Scholar

Parker MC, Jeynes C. Entropic uncertainty principle, partition function and holographic principle derived from Liouville’s theorem. Physics Open. 2021;7: 100068. (11pp). doi: 10.1016/j.physo.2021.100068 ParkerMC JeynesC Entropic uncertainty principle, partition function and holographic principle derived from Liouville’s theorem Physics Open 2021 7 100068 (11pp). 10.1016/j.physo.2021.100068 Open DOISearch in Google Scholar

Parker MC, Jeynes C, Catford WN. Halo properties in helium nuclei from the perspective of geometrical thermodynamics. Annalen Der Physik. 2022;534: 2100278. (11pp). doi: 10.1002/andp.202100278 ParkerMC JeynesC CatfordWN Halo properties in helium nuclei from the perspective of geometrical thermodynamics Annalen Der Physik 2022 534 2100278 (11pp). 10.1002/andp.202100278 Open DOISearch in Google Scholar

Parker MC, Jeynes C. Relating a system’s Hamiltonian to its entropy production using a complex-time approach. Entropy. April 2023;25: 629. (19pp). doi: 10.3390/e25040629 ParkerMC JeynesC Relating a system’s Hamiltonian to its entropy production using a complex-time approach Entropy April 2023 25 629 (19pp). 10.3390/e25040629 Open DOISearch in Google Scholar

Chatterjee A, Zhang K, Rao Y, Sharma N, Giammar DE, Parker KM. Metal-catalyzed hydrolysis of RNA in aqueous environments. Environmental Science & Technology. 2022;56: 3564–3574. doi: 10.1021/acs.est.1c08468 ChatterjeeA ZhangK RaoY SharmaN GiammarDE ParkerKM Metal-catalyzed hydrolysis of RNA in aqueous environments Environmental Science & Technology 2022 56 3564 3574 10.1021/acs.est.1c08468 Open DOISearch in Google Scholar

Sun Y, Frenkel-Pinter M, Liotta CL, Grover MA. The pH dependent mechanisms of non-enzymatic peptide bond cleavage reactions. Physical Chemistry Chemical Physics. 2019;22: 107–113. doi: 10.1039/c9cp05240b SunY Frenkel-PinterM LiottaCL GroverMA The pH dependent mechanisms of non-enzymatic peptide bond cleavage reactions Physical Chemistry Chemical Physics 2019 22 107 113 10.1039/c9cp05240b Open DOISearch in Google Scholar

Beardslee PC, Dhamdhere G, Jiang J, Ogbonna EC, Presloid CJ, Prorok M, et al. Enzymes & CLP proteases. In: Jez J. (ed.) Encyclopedia of biological chemistry III. 3rd ed., Vol. 3. Oxford: Elsevier; 2021. p.292–306. doi: 10.1016/B978-0-12-819460-7.00156-0 BeardsleePC DhamdhereG JiangJ OgbonnaEC PresloidCJ ProrokM Enzymes & CLP proteases In: JezJ. (ed.) Encyclopedia of biological chemistry III 3rd ed. 3 Oxford Elsevier 2021 292 306 10.1016/B978-0-12-819460-7.00156-0 Open DOISearch in Google Scholar

Bruce Martin R. Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers. 1998;45: 351–353. doi: 10.1002/(SICI)1097-0282(19980415)45:5<351:AID-BIP3>3.0.CO;2-K Bruce MartinR Free energies and equilibria of peptide bond hydrolysis and formation Biopolymers 1998 45 351 353 10.1002/(SICI)1097-0282(19980415)45:5<351:AID-BIP3>3.0.CO;2-K Open DOISearch in Google Scholar

Radzicka A, Wolfenden R. Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. Journal of the American Chemical Society. 1996;118: 6105–6109. doi: 10.1021/ja954077c RadzickaA WolfendenR Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases Journal of the American Chemical Society 1996 118 6105 6109 10.1021/ja954077c Open DOISearch in Google Scholar

Xu Z, Asakawa S. Release and degradation of dissolved environmental RNAs from zebrafish cells. RNA Biology. 2025;22(1): 1–12. doi: 10.1080/15476286.2025.2486281 XuZ AsakawaS Release and degradation of dissolved environmental RNAs from zebrafish cells RNA Biology 2025 22 1 1 12 10.1080/15476286.2025.2486281 Open DOISearch in Google Scholar

Brigiano FS, Gierada M, Tielens F, Pietrucci F. Mechanism and free-energy landscape of peptide bond formation at the silica−water interface. ACSCatalysis. 2022;12: 2821–2830. doi: 10.1021/acscatal.1c05635 BrigianoFS GieradaM TielensF PietrucciF Mechanism and free-energy landscape of peptide bond formation at the silica−water interface ACSCatalysis 2022 12 2821 2830 10.1021/acscatal.1c05635 Open DOISearch in Google Scholar

Forsythe JG, Yu S-S, Mamajanov I, Grover MA, Krishnamurthy R, Fernández FM, et al. Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth. Angewandte Chemie. 2015;54: 9871–9875. doi: 10.1002/anie.201503792 ForsytheJG YuS-S MamajanovI GroverMA KrishnamurthyR FernándezFM Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth Angewandte Chemie 2015 54 9871 9875 10.1002/anie.201503792 Open DOISearch in Google Scholar

Zagrovic B, Adlhart M, Kapral TH. Coding from binding? Molecular interactions at the heart of translation. Annual Review of Biophysics. 2023;52: 69–89. doi: 10.1146/annurev-biophys-090622-102329 ZagrovicB AdlhartM KapralTH Coding from binding? Molecular interactions at the heart of translation Annual Review of Biophysics 2023 52 69 89 10.1146/annurev-biophys-090622-102329 Open DOISearch in Google Scholar

Guo X, Su M. The origin of translation: bridging the nucleotides and peptides. International Journal of Molecular Sciences. 2023;24: 197. (16pp). doi: 10.3390/ijms24010197 GuoX SuM The origin of translation: bridging the nucleotides and peptides International Journal of Molecular Sciences 2023 24 197 (16pp). 10.3390/ijms24010197 Open DOISearch in Google Scholar

Parker MC, Jeynes C. Fullerene stability by geometrical thermodynamics. ChemistrySelect. 2020;5: 514. doi: 10.1002/slct.201903633 ParkerMC JeynesC Fullerene stability by geometrical thermodynamics ChemistrySelect 2020 5 514 10.1002/slct.201903633 Open DOISearch in Google Scholar

Parker MC, Jeynes C, Walker SD. A metric for the entropic purpose of a system. Entropy (Basel, Switzerland). 2025;27: 131. (40pp). doi: 10.3390/e27020131 ParkerMC JeynesC WalkerSD A metric for the entropic purpose of a system Entropy (Basel, Switzerland) 2025 27 131 (40pp). 10.3390/e27020131 Open DOISearch in Google Scholar