This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cummings RD. Evolution and diversity of glycomolecules from unicellular organisms to humans. BioCosmos. 2024;1: 1–35. doi: 10.2478/biocosmos-2024-0001CummingsRDEvolution and diversity of glycomolecules from unicellular organisms to humansBioCosmos2024113510.2478/biocosmos-2024-0001Open DOISearch in Google Scholar
Walt D, Aoki-Kinoshita KF, Bertozzi CR, Boons G-J, Darvill A, Hart G, et al. Transforming glycoscience: a roadmap for the future. Vol. 2012. Washington, DC: The National Academy Press; 2012. p.191.WaltDAoki-KinoshitaKFBertozziCRBoonsG-JDarvillAHartGTransforming glycoscience: a roadmap for the future2012Washington, DCThe National Academy Press2012191Search in Google Scholar
Varki A, Kornfeld S. Historical background and overview. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.1–20.VarkiAKornfeldSHistorical background and overviewIn:VarkiACummingsRDEskoJDStanleyPHartGW(eds.)Essentials of glycobiologyCold Spring Harbor (NY)Cold Spring Harbor Press2022120Search in Google Scholar
Zoldos V, Horvat T, Lauc G. Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies. Current Opinion in Chemical Biology. 2013;17(1): 34–40. doi: 10.1016/j.cbpa.2012.12.007ZoldosVHorvatTLaucGGlycomics meets genomics, epigenomics and other high throughput omics for system biology studiesCurrent Opinion in Chemical Biology2013171344010.1016/j.cbpa.2012.12.007Open DOISearch in Google Scholar
Lauc G, Vojta A, Zoldos V. Epigenetic regulation of glycosylation is the quantum mechanics of biology. Biochimica et Biophysica Acta. 2014;1840(1): 65–70. doi: 10.1016/j.bbagen.2013.08.017LaucGVojtaAZoldosVEpigenetic regulation of glycosylation is the quantum mechanics of biologyBiochimica et Biophysica Acta201418401657010.1016/j.bbagen.2013.08.017Open DOISearch in Google Scholar
Sackstein R, Hoffmeister KM, Stowell SR, Kinoshita T, Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.615–630.SacksteinRHoffmeisterKMStowellSRKinoshitaTVarkiAFreezeHHGlycans in acquired human diseasesIn:VarkiACummingsRDEskoJDStanleyPHartGW(eds.)Essentials of glycobiologyCold Spring Harbor (NY)Cold Spring Harbor Press2022615630Search in Google Scholar
Kristic J, Lauc G. Ubiquitous importance of protein glycosylation. Methods in Molecular Biology (Clifton, NJ). 2017;1503: 1–12. doi: 10.1007/978-1-4939-6493-2_1KristicJLaucGUbiquitous importance of protein glycosylationMethods in Molecular Biology (Clifton, NJ)2017150311210.1007/978-1-4939-6493-2_1Open DOISearch in Google Scholar
Lauc G, Zoldos V. Epigenetic regulation of glycosylation could be a mechanism used by complex organisms to compete with microbes on an evolutionary scale. Medical Hypotheses. 2009;73: 510–512. doi: 10.1016/j.mehy.2009.03.059LaucGZoldosVEpigenetic regulation of glycosylation could be a mechanism used by complex organisms to compete with microbes on an evolutionary scaleMedical Hypotheses20097351051210.1016/j.mehy.2009.03.059Open DOISearch in Google Scholar
Freeze HH, Kinoshita T, Varki A. Chapter 46 glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2017. p. 521–526.FreezeHHKinoshitaTVarkiAChapter 46 glycans in acquired human diseasesIn:VarkiACummingsRDEskoJDStanleyPHartGWAebiM(eds.)Essentials of glycobiology3rd ed.Cold Spring Harbor, NYCold Spring Harbor Press2017521526Search in Google Scholar
Varki A, Kannagi R, Toole B, Stanley P. Chapter 47 glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2017. p. 597–609.VarkiAKannagiRTooleBStanleyPChapter 47 glycosylation changes in cancerIn:VarkiACummingsRDEskoJDStanleyPHartGWAebiM(eds.)Essentials of glycobiology3rd ed.Cold Spring Harbor, NYCold Spring Harbor Press2017597609Search in Google Scholar
Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annual Review of Immunology. 2007;25: 21–50. doi: 10.1146/annurev.immunol.25.022106.141702ArnoldJNWormaldMRSimRBRuddPMDwekRAThe impact of glycosylation on the biological function and structure of human immunoglobulinsAnnual Review of Immunology200725215010.1146/annurev.immunol.25.022106.141702Open DOISearch in Google Scholar
Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annual Review of Biochemistry. 1988;57: 785–838. doi: 10.1146/annurev.bi.57.070188.004033RademacherTWParekhRBDwekRAGlycobiologyAnnual Review of Biochemistry19885778583810.1146/annurev.bi.57.070188.004033Open DOISearch in Google Scholar
Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth CW, Seeberger PH. Exploring the structural diversity of mammalian carbohydrates (‘glycospace’) by statistical databank analysis. ACS Chemical Biology. 2007;2(10): 685–691. doi: 10.1021/cb700178sWerzDBRanzingerRHergetSAdibekianAvon der LiethCWSeebergerPHExploring the structural diversity of mammalian carbohydrates (‘glycospace’) by statistical databank analysisACS Chemical Biology200721068569110.1021/cb700178sOpen DOISearch in Google Scholar
Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4(6): 759–767. doi: 10.1093/glycob/4.6.759LaineRAA calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systemsGlycobiology19944675976710.1093/glycob/4.6.759Open DOISearch in Google Scholar
Stanley P, Moremen KW, Lewis NE, Taniguchi N, Aebi M. N-glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.103–116.StanleyPMoremenKWLewisNETaniguchiNAebiMN-glycansIn:VarkiACummingsRDEskoJDStanleyPHartGW(eds.)Essentials of glycobiologyCold Spring Harbor (NY)Cold Spring Harbor Press2022103116Search in Google Scholar
Stanley P, Wuhrer M, Lauc G, Stowell SR, Cummings RD. Structures common to different glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.165–184.StanleyPWuhrerMLaucGStowellSRCummingsRDStructures common to different glycansIn:VarkiACummingsRDEskoJDStanleyPHartGW(eds.)Essentials of glycobiologyCold Spring Harbor (NY)Cold Spring Harbor Press2022165184Search in Google Scholar
Lauc G, Zoldos V. Protein glycosylation – an evolutionary crossroad between genes and environment. Molecular bioSystems. 2010;6(12): 2373–2379. doi: 10.1039/c0mb00067aLaucGZoldosVProtein glycosylation – an evolutionary crossroad between genes and environmentMolecular bioSystems20106122373237910.1039/c0mb00067aOpen DOISearch in Google Scholar
Wang TT. IgG Fc glycosylation in human immunity. Current Topics in Microbiology and Immunology. 2019;423: 63–75. doi: 10.1007/82_2019_152WangTTIgG Fc glycosylation in human immunityCurrent Topics in Microbiology and Immunology2019423637510.1007/82_2019_152Open DOISearch in Google Scholar
Kristic J, Lauc G, Pezer M. Immunoglobulin G glycans – biomarkers and molecular effectors of aging. Clinica Chimica Acta. 2022;535: 30–45. doi: 10.1016/j.cca.2022.08.006KristicJLaucGPezerMImmunoglobulin G glycans – biomarkers and molecular effectors of agingClinica Chimica Acta2022535304510.1016/j.cca.2022.08.006Open DOISearch in Google Scholar
André S, Kaltner H, Manning JC, Murphy PV, Gabius HJ. Lectins: getting familiar with translators of the sugar code. Molecules (Basel, Switzerland). 2015;20(2): 1788–1823. doi: 10.3390/molecules20021788AndréSKaltnerHManningJCMurphyPVGabiusHJLectins: getting familiar with translators of the sugar codeMolecules (Basel, Switzerland)20152021788182310.3390/molecules20021788Open DOISearch in Google Scholar
Rudiger H, Gabius HJ. The biochemical basis and coding capacity of the sugar code. In: Gabius HJ. (ed.) The sugar code: fundamentals of glycosciences. Weinheim: Wiley-Blackwell; 2009. p. 3–14.RudigerHGabiusHJThe biochemical basis and coding capacity of the sugar codeIn:GabiusHJ(ed.)The sugar code: fundamentals of glycosciencesWeinheimWiley-Blackwell2009314Search in Google Scholar
Lombard J. Early evolution of polyisoprenol biosynthesis and the origin of cell walls. PeerJ. 2016;4: e2626. doi: 10.7717/peerj.2626LombardJEarly evolution of polyisoprenol biosynthesis and the origin of cell wallsPeerJ20164e262610.7717/peerj.2626Open DOISearch in Google Scholar
Eichler J, Guan Z. Lipid sugar carriers at the extremes: the phosphodolichols archaea use in N-glycosylation. Biochimica et biophysica acta. Molecular and Cell Biology of Lipids. 2017;1862(6): 589–599. doi: 10.1016/j.bbalip.2017.03.005EichlerJGuanZLipid sugar carriers at the extremes: the phosphodolichols archaea use in N-glycosylationBiochimica et biophysica acta. Molecular and Cell Biology of Lipids20171862658959910.1016/j.bbalip.2017.03.005Open DOISearch in Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research. 2014;42(Database issue): D490–D495. doi: 10.1093/nar/gkt1178LombardVGolaconda RamuluHDrulaECoutinhoPMHenrissatBThe carbohydrate-active enzymes database (CAZy) in 2013Nucleic Acids Research201442Database issueD490D49510.1093/nar/gkt1178Open DOISearch in Google Scholar
Guay KP, Ke H, Canniff NP, George GT, Eyles SJ, Mariappan M, et al. ER chaperones use a protein folding and quality control glycocode. Molecular Cell. 2023;83(24): 4524–4537.e5. doi: 10.1016/j.molcel.2023.11.006GuayKPKeHCanniffNPGeorgeGTEylesSJMariappanMER chaperones use a protein folding and quality control glycocodeMolecular Cell2023832445244537.e510.1016/j.molcel.2023.11.006Open DOISearch in Google Scholar
Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Letters. 2015;589(22): 3379–3387. doi: 10.1016/j.febslet.2015.07.021CarameloJJParodiAJA sweet code for glycoprotein foldingFEBS Letters2015589223379338710.1016/j.febslet.2015.07.021Open DOISearch in Google Scholar
Suzuki T, Cummings RD, Aebi M, Parodi A. Glycans in glycoprotein quality control. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.529–538.SuzukiTCummingsRDAebiMParodiAGlycans in glycoprotein quality controlIn:VarkiACummingsRDEskoJDStanleyPHartGWAebiM(eds.)Essentials of glycobiology4th ed.Cold Spring Harbor (NY)Cold Spring Harbor Press2022529538Search in Google Scholar
Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell. 2021;184(9): 2412–2429.e16. doi: 10.1016/j.cell.2021.03.035WeigelAVChangCLShtengelGXuCSHoffmanDPFreemanMER-to-Golgi protein delivery through an interwoven, tubular network extending from ERCell2021184924122429.e1610.1016/j.cell.2021.03.035Open DOISearch in Google Scholar
Colley KJ, Varki A, Haltiwanger RS, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.43–52.ColleyKJVarkiAHaltiwangerRSKinoshitaTCellular organization of glycosylationIn:VarkiACummingsRDEskoJDStanleyPHartGWAebiM(eds.)Essentials of glycobiology4th ed.Cold Spring Harbor (NY)Cold Spring Harbor Press20224352Search in Google Scholar
Connerly PL. How do proteins move through the Golgi apparatus? Nature Education. 2010;3(9): 60–66. doi: www.nature.com/scitable/topicpage/how-do-proteins-move-through-the-golgi-14397318/ConnerlyPLHow do proteins move through the Golgi apparatus?Nature Education2010396066doi: www.nature.com/scitable/topicpage/how-do-proteins-move-through-the-golgi-14397318/Search in Google Scholar
D’Souza Z, Blackburn JB, Kudlyk T, Pokrovskaya ID, Lupashin VV. Defects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cells. Frontiers in Cell and Developmental Biology. 2019;7: 118. doi: 10.3389/fcell.2019.00118D’SouzaZBlackburnJBKudlykTPokrovskayaIDLupashinVVDefects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cellsFrontiers in Cell and Developmental Biology2019711810.3389/fcell.2019.00118Open DOISearch in Google Scholar
Blackburn JB, D’Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Letters. 2019;593(17): 2466–2487. doi: 10.1002/1873-3468.13570BlackburnJBD’SouzaZLupashinVVMaintaining order: COG complex controls Golgi trafficking, processing, and sortingFEBS Letters2019593172466248710.1002/1873-3468.13570Open DOISearch in Google Scholar
Toustou C, Walet-Balieu ML, Kiefer-Meyer MC, Houdou M, Lerouge P, Foulquier F, et al. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biological Reviews of the Cambridge Philosophical Society. 2022;97(2): 732–748. doi: 10.1111/brv.12820ToustouCWalet-BalieuMLKiefer-MeyerMCHoudouMLerougePFoulquierFTowards understanding the extensive diversity of protein N-glycan structures in eukaryotesBiological Reviews of the Cambridge Philosophical Society202297273274810.1111/brv.12820Open DOISearch in Google Scholar
Gagneux P, Hennet T, Varki A. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.79–92.GagneuxPHennetTVarkiABiological functions of glycansIn:VarkiACummingsRDEskoJDStanleyPHartGW(eds.)Essentials of glycobiologyCold Spring Harbor (NY)Cold Spring Harbor Press20227992Search in Google Scholar
Taylor ME, Drickamer K, Imberty A, van Kooyk Y, Schnaar RL, Etzler ME, et al. Discovery and classification of glycan-binding proteins. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.375–386.TaylorMEDrickamerKImbertyAvan KooykYSchnaarRLEtzlerMEDiscovery and classification of glycan-binding proteinsIn:VarkiACummingsRDEskoJDStanleyPHartGW(eds.)Essentials of glycobiologyCold Spring Harbor (NY)Cold Spring Harbor Press2022375386Search in Google Scholar
Bournazos S, Ravetch JV. Fcgamma receptor pathways during active and passive immunization. Immunological Reviews. 2015;268(1): 88–103. doi: 10.1111/imr.12343BournazosSRavetchJVFcgamma receptor pathways during active and passive immunizationImmunological Reviews201526818810310.1111/imr.12343Open DOISearch in Google Scholar
Lux A, Nimmerjahn F. Impact of differential glycosylation on IgG activity. Advances in Experimental Medicine and Biology. 2011;780: 113–124. doi: 10.1007/978-1-4419-5632-3_10LuxANimmerjahnFImpact of differential glycosylation on IgG activityAdvances in Experimental Medicine and Biology201178011312410.1007/978-1-4419-5632-3_10Open DOISearch in Google Scholar
Bournazos S, Ravetch JV. Diversification of IgG effector functions. International Immunology. 2017;29(7): 303–310. doi: 10.1093/intimm/dxx025BournazosSRavetchJVDiversification of IgG effector functionsInternational Immunology201729730331010.1093/intimm/dxx025Open DOISearch in Google Scholar
Bournazos S, Ravetch JV. Fcgamma receptor function and the design of vaccination strategies. Immunity. 2017;47(2): 224–233. doi: 10.1016/j.immuni.2017.07.009BournazosSRavetchJVFcgamma receptor function and the design of vaccination strategiesImmunity201747222423310.1016/j.immuni.2017.07.009Open DOISearch in Google Scholar
Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, et al. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochimica et Biophysica Acta. 2006;1760(4): 693–700. doi: 10.1016/j.bbagen.2005.10.002YamaguchiYNishimuraMNaganoMYagiHSasakawaHUchidaKGlycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopyBiochimica et Biophysica Acta20061760469370010.1016/j.bbagen.2005.10.002Open DOISearch in Google Scholar
Yamaguchi Y, Barb AW. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology. 2020;30(4): 214–225. doi: 10.1093/glycob/cwz068YamaguchiYBarbAWA synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and functionGlycobiology202030421422510.1093/glycob/cwz068Open DOISearch in Google Scholar
Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General mechanism for modulating immunoglobulin effector function. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(24): 9868–9872. doi: 10.1073/pnas.1307864110SondermannPPinceticAMaamaryJLammensKRavetchJVGeneral mechanism for modulating immunoglobulin effector functionProceedings of the National Academy of Sciences of the United States of America2013110249868987210.1073/pnas.1307864110Open DOISearch in Google Scholar
Kronimus Y, Dodel R, Galuska SP, Neumann S. IgG Fc N-glycosylation: alterations in neurologic diseases and potential therapeutic target? Journal of Autoimmunity. 2019;96: 14–23. doi: 10.1016/j.jaut.2018.10.006KronimusYDodelRGaluskaSPNeumannSIgG Fc N-glycosylation: alterations in neurologic diseases and potential therapeutic target?Journal of Autoimmunity201996142310.1016/j.jaut.2018.10.006Open DOISearch in Google Scholar
Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. Journal of Autoimmunity. 2015;57: 1–13. doi: 10.1016/j.jaut.2014.12.002MaverakisEKimKShimodaMGershwinMEPatelFWilkenRGlycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical reviewJournal of Autoimmunity20155711310.1016/j.jaut.2014.12.002Open DOISearch in Google Scholar
Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science (New York, NY). 2002;296(5566): 298–300. doi: 10.1126/science.1068883MedzhitovRJanewayCAJrDecoding the patterns of self and nonself by the innate immune systemScience (New York, NY)2002296556629830010.1126/science.1068883Open DOISearch in Google Scholar
Parekh RB, Tse AGD, Dwek RA, Williams AF, Rademacher TW. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. The EMBO Journal. 1987;6: 1233–1244. doi: 10.1002/j.1460-2075.1987.tb02359.xParekhRBTseAGDDwekRAWilliamsAFRademacherTWTissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1The EMBO Journal198761233124410.1002/j.1460-2075.1987.tb02359.xOpen DOISearch in Google Scholar
Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, et al. A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities. ACS Chemical Biology. 2022;17(11): 2993–3012. doi: 10.1021/acschembio.1c00689BojarDMecheLMengGEngWSmithDFCummingsRDA useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificitiesACS Chemical Biology202217112993301210.1021/acschembio.1c00689Open DOISearch in Google Scholar
Zeng X, Novotny MV, Clemmer DE, Trinidad JC. A graphical representation of glycan heterogeneity. Glycobiology. 2022;32(3): 201–207. doi: 10.1093/glycob/cwab116ZengXNovotnyMVClemmerDETrinidadJCA graphical representation of glycan heterogeneityGlycobiology202232320120710.1093/glycob/cwab116Open DOISearch in Google Scholar
Lis H, Sharon N. Protein glycosylation. Structural and functional aspects. European Journal of Biochemistry/FEBS. 1993;218(1): 1–27. doi: 10.1111/j.1432-1033.1993.tb18347.xLisHSharonNProtein glycosylation. Structural and functional aspectsEuropean Journal of Biochemistry/FEBS1993218112710.1111/j.1432-1033.1993.tb18347.xOpen DOISearch in Google Scholar
Sharon N, Lis H. Carbohydrates in cell recognition. Scientific American. 1993;268(1): 82–89. doi: 10.1038/scientificamerican0193-82SharonNLisHCarbohydrates in cell recognitionScientific American19932681828910.1038/scientificamerican0193-82Open DOISearch in Google Scholar
Rodrigues JG, Balmaña M, Macedo JA, Poças J, Fernandes Â, de-Freitas-Junior JCM, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cellular Immunology. 2018;333: 46–57. doi: 10.1016/j.cellimm.2018.03.007RodriguesJGBalmañaMMacedoJAPoçasJFernandesÂde-Freitas-JuniorJCMGlycosylation in cancer: selected roles in tumour progression, immune modulation and metastasisCellular Immunology2018333465710.1016/j.cellimm.2018.03.007Open DOISearch in Google Scholar
Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, et al. Glycans as shapers of tumour microenvironment: a sweet driver of T-cell-mediated anti-tumour immune response. Immunology. 2023;168(2): 217–232. doi: 10.1111/imm.13494FernandesÂAzevedoCMSilvaMCFariaGDantasCSVicenteMMGlycans as shapers of tumour microenvironment: a sweet driver of T-cell-mediated anti-tumour immune responseImmunology2023168221723210.1111/imm.13494Open DOISearch in Google Scholar
Kong Y, Chen H, Chen M, Li Y, Li J, Liu Q, et al. Abnormal ECA-binding membrane glycans and galactosylated CAT and P4HB in lesion tissues as potential biomarkers for hepatocellular carcinoma diagnosis. Frontiers in Oncology. 2022;12: 855952. doi: 10.3389/fonc.2022.855952KongYChenHChenMLiYLiJLiuQAbnormal ECA-binding membrane glycans and galactosylated CAT and P4HB in lesion tissues as potential biomarkers for hepatocellular carcinoma diagnosisFrontiers in Oncology20221285595210.3389/fonc.2022.855952Open DOISearch in Google Scholar
Ma T, Wang Y, Jia L, Shu J, Yu H, Du H, et al. Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma. RSC Advances. 2019;9(38): 22064–22073. doi: 10.1039/C9RA04341AMaTWangYJiaLShuJYuHDuHIncreased expression of core-fucosylated glycans in human lung squamous cell carcinomaRSC Advances2019938220642207310.1039/C9RA04341AOpen DOISearch in Google Scholar
Liu L, Li D, Shu J, Wang L, Zhang F, Zhang C, et al. Protein glycopatterns in bronchoalveolar lavage fluid as novel potential biomarkers for diagnosis of lung cancer. Frontiers in Oncology. 2020;10: 568433. doi: 10.3389/fonc.2020.568433LiuLLiDShuJWangLZhangFZhangCProtein glycopatterns in bronchoalveolar lavage fluid as novel potential biomarkers for diagnosis of lung cancerFrontiers in Oncology20201056843310.3389/fonc.2020.568433Open DOISearch in Google Scholar
Yang G, Tan Z, Lu W, Guo J, Yu H, Yu J, et al. Quantitative glycome analysis of N-glycan patterns in bladder cancer vs normal bladder cells using an integrated strategy. Journal of Proteome Research. 2015;14(2): 639–653. doi: 10.1021/pr5006026YangGTanZLuWGuoJYuHYuJQuantitative glycome analysis of N-glycan patterns in bladder cancer vs normal bladder cells using an integrated strategyJournal of Proteome Research201514263965310.1021/pr5006026Open DOISearch in Google Scholar
Yang J, Liu X, Shu J, Hou Y, Chen M, Yu H, et al. Abnormal Galactosylated-Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast Cancer. Glycoconjugate Journal. 2020;37(3): 373–394. doi: 10.1007/s10719-020-09910-6YangJLiuXShuJHouYChenMYuHAbnormal Galactosylated-Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast CancerGlycoconjugate Journal202037337339410.1007/s10719-020-09910-6Open DOISearch in Google Scholar
Yu H, Li X, Chen M, Zhang F, Liu X, Yu J, et al. Integrated glycome strategy for characterization of aberrant LacNAc contained N-glycans associated with gastric carcinoma. Frontiers in Oncology. 2019;9: 636. doi: 10.3389/fonc.2019.00636YuHLiXChenMZhangFLiuXYuJIntegrated glycome strategy for characterization of aberrant LacNAc contained N-glycans associated with gastric carcinomaFrontiers in Oncology2019963610.3389/fonc.2019.00636Open DOISearch in Google Scholar
Zhu H, Liu M, Yu H, Liu X, Zhong Y, Shu J, et al. Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy. Journal of Diabetes Research. 2017;2017: 5728087. doi: 10.1155/2017/5728087ZhuHLiuMYuHLiuXZhongYShuJGlycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathyJournal of Diabetes Research20172017572808710.1155/2017/5728087Open DOISearch in Google Scholar
Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2022;24(10): 1865–1880. doi: 10.1007/s12094-022-02858-zPuCBiyuanXuKZhaoYGlycosylation and its research progress in endometrial cancerClinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico202224101865188010.1007/s12094-022-02858-zOpen DOISearch in Google Scholar
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Advances in Cancer Research. 2023;157: 123–155. doi: 10.1016/bs.acr.2022.07.003MarcielMPHaldarBHwangJBhaleraoNBellisSLRole of tumor cell sialylation in pancreatic cancer progressionAdvances in Cancer Research202315712315510.1016/bs.acr.2022.07.003Open DOISearch in Google Scholar
Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. The Journal of Experimental Medicine. 2022;219(6): e20211505. doi: 10.1084/jem.20211505LumibaoJCTremblayJRHsuJEngleDDAltered glycosylation in pancreatic cancer and beyondThe Journal of Experimental Medicine20222196e2021150510.1084/jem.20211505Open DOISearch in Google Scholar
Godefa TM, Derks S, Thijssen V. Galectins in esophageal cancer: current knowledge and future perspectives. Cancers (Basel). 2022;14(23): 5790. doi: 10.3390/cancers14235790GodefaTMDerksSThijssenVGalectins in esophageal cancer: current knowledge and future perspectivesCancers (Basel)20221423579010.3390/cancers14235790Open DOISearch in Google Scholar
In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022.In: VarkiACummingsRDEskoJDStanleyPHartGWAebiM(eds.)Essentials of glycobiology4th ed.Cold Spring Harbor (NY)Cold Spring Harbor Laboratory Press2022Search in Google Scholar
Neelamegham S, Mahal LK. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Current Opinion in Structural Biology. 2016;40: 145–152. doi: 10.1016/j.sbi.2016.09.013NeelameghamSMahalLKMulti-level regulation of cellular glycosylation: from genes to transcript to enzyme to structureCurrent Opinion in Structural Biology20164014515210.1016/j.sbi.2016.09.013Open DOISearch in Google Scholar
Dall’Olio F, Trinchera M. Epigenetic bases of aberrant glycosylation in cancer. International Journal of Molecular Sciences. 2017;18(5): 998. doi: 10.3390/ijms18050998Dall’OlioFTrincheraMEpigenetic bases of aberrant glycosylation in cancerInternational Journal of Molecular Sciences201718599810.3390/ijms18050998Open DOISearch in Google Scholar
Groth T, Gunawan R, Neelamegham S. A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis. Beilstein Journal of Organic Chemistry. 2021;17: 1712–1724. doi: 10.3762/bjoc.17.119GrothTGunawanRNeelameghamSA systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesisBeilstein Journal of Organic Chemistry2021171712172410.3762/bjoc.17.119Open DOISearch in Google Scholar
Thu CT, Mahal LK. Sweet control: microRNA regulation of the glycome. Biochemistry. 2020;59(34): 3098–3110. doi: 10.1021/acs.biochem.9b00784ThuCTMahalLKSweet control: microRNA regulation of the glycomeBiochemistry202059343098311010.1021/acs.biochem.9b00784Open DOISearch in Google Scholar
Halfon MS. Perspectives on gene regulatory network evolution. Trends in Genetics: TIG. 2017;33(7): 436–447. doi: 10.1016/j.tig.2017.04.005HalfonMSPerspectives on gene regulatory network evolutionTrends in Genetics: TIG201733743644710.1016/j.tig.2017.04.005Open DOISearch in Google Scholar
Schember I, Halfon MS. Common themes and future challenges in understanding gene regulatory network evolution. Cells. 2022;11(3): 510. doi: 10.3390/cells11030510SchemberIHalfonMSCommon themes and future challenges in understanding gene regulatory network evolutionCells202211351010.3390/cells11030510Open DOISearch in Google Scholar
Frankel N. Multiple layers of complexity in cis-regulatory regions of developmental genes. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2012;241(12): 1857–1866. doi: 10.1002/dvdy.23871FrankelNMultiple layers of complexity in cis-regulatory regions of developmental genesDevelopmental Dynamics: An Official Publication of the American Association of Anatomists2012241121857186610.1002/dvdy.23871Open DOISearch in Google Scholar
Davidson EH. Evolutionary bioscience as regulatory systems biology. Developmental Biology. 2011;357(1): 35–40. doi: 10.1016/j.ydbio.2011.02.004DavidsonEHEvolutionary bioscience as regulatory systems biologyDevelopmental Biology20113571354010.1016/j.ydbio.2011.02.004Open DOISearch in Google Scholar
Agrawal P, Kurcon T, Pilobello KT, Rakus JF, Koppolu S, Liu Z, et al. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(11): 4338–4343. doi: 10.1073/pnas.1321524111AgrawalPKurconTPilobelloKTRakusJFKoppoluSLiuZMapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocodeProceedings of the National Academy of Sciences of the United States of America2014111114338434310.1073/pnas.1321524111Open DOISearch in Google Scholar
Jame-Chenarboo F, Ng HH, Macdonald D, Mahal LK. High-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactions. ACS Central Science. 2022;8(11): 1527–1536. doi: 10.1021/acscentsci.2c00748Jame-ChenarbooFNgHHMacdonaldDMahalLKHigh-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactionsACS Central Science20228111527153610.1021/acscentsci.2c00748Open DOISearch in Google Scholar
Groth T, Diehl AD, Gunawan R, Neelamegham S. GlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontology. Bioinformatics. 2022;38(24): 5413–5420. doi: 10.1093/bioinformatics/btac704GrothTDiehlADGunawanRNeelameghamSGlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontologyBioinformatics202238245413542010.1093/bioinformatics/btac704Open DOISearch in Google Scholar
Kelkar A, Groth T, Neelamegham S. Forward genetic screens of human glycosylation pathways using the GlycoGene CRISPR library. Current Protocols. 2022;2(4): e402. doi: 10.1002/cpz1.402KelkarAGrothTNeelameghamSForward genetic screens of human glycosylation pathways using the GlycoGene CRISPR libraryCurrent Protocols202224e40210.1002/cpz1.402Open DOISearch in Google Scholar
Stewart N, Wisnovsky S. Bridging glycomics and genomics: new uses of functional genetics in the study of cellular glycosylation. Frontiers in Molecular Biosciences. 2022;9: 934584. doi: 10.3389/fmolb.2022.934584StewartNWisnovskySBridging glycomics and genomics: new uses of functional genetics in the study of cellular glycosylationFrontiers in Molecular Biosciences2022993458410.3389/fmolb.2022.934584Open DOISearch in Google Scholar
Lisacek F, Tiemeyer M, Mazumder R, Aoki-Kinoshita KF. Worldwide glycoscience informatics infrastructure: the GlySpace alliance. Journal of the American Chemical Society Au. 2023;3(1): 4–12. doi: 10.1021/jacsau.2c00477LisacekFTiemeyerMMazumderRAoki-KinoshitaKFWorldwide glycoscience informatics infrastructure: the GlySpace allianceJournal of the American Chemical Society Au20233141210.1021/jacsau.2c00477Open DOISearch in Google Scholar
Bojar D, Lisacek F. Glycoinformatics in the artificial intelligence era. Chemical Reviews. 2022;122(20): 15971–15988. doi: 10.1021/acs.chemrev.2c00110BojarDLisacekFGlycoinformatics in the artificial intelligence eraChemical Reviews202212220159711598810.1021/acs.chemrev.2c00110Open DOISearch in Google Scholar
Hayes C, Daponte V, Mariethoz J, Lisacek F. This is GlycoQL. Bioinformatics (Oxford, England). 2022;38(Suppl_2): ii162–ii167. doi: 10.1093/bioinformatics/btac500HayesCDaponteVMariethozJLisacekFThis is GlycoQLBioinformatics (Oxford, England)202238Suppl_2ii162ii16710.1093/bioinformatics/btac500Open DOISearch in Google Scholar
Mariethoz J, Alocci D, Karlsson NG, Packer NH, Lisacek F. An interactive view of glycosylation. Methods in Molecular Biology (Clifton, NJ). 2022;2370: 41–65. doi: 10.1007/978-1-0716-1685-7_3MariethozJAlocciDKarlssonNGPackerNHLisacekFAn interactive view of glycosylationMethods in Molecular Biology (Clifton, NJ)20222370416510.1007/978-1-0716-1685-7_3Open DOISearch in Google Scholar
Aoki-Kinoshita KF, Campbell MP, Lisacek F, Neelamegham S, York WS, Packer NH. Glycoinformatics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p. 705–718.Aoki-KinoshitaKFCampbellMPLisacekFNeelameghamSYorkWSPackerNHGlycoinformaticsIn:VarkiACummingsRDEskoJDStanleyPHartGWAebiM(eds.)Essentials of glycobiology4th ed.Cold Spring Harbor (NY)Cold Spring Harbor Press2022705718Search in Google Scholar
Kasper BT, Koppolu S, Mahal LK. Insights into miRNA regulation of the human glycome. Biochemical and Biophysical Research Communications. 2014;445(4): 774–779. doi: 10.1016/j.bbrc.2014.01.034KasperBTKoppoluSMahalLKInsights into miRNA regulation of the human glycomeBiochemical and Biophysical Research Communications2014445477477910.1016/j.bbrc.2014.01.034Open DOISearch in Google Scholar
Indellicato R, Trinchera M. Epigenetic regulation of glycosylation in cancer and other diseases. International Journal of Molecular Sciences. 2021;22(6): 2980. doi: 10.3390/ijms22062980IndellicatoRTrincheraMEpigenetic regulation of glycosylation in cancer and other diseasesInternational Journal of Molecular Sciences2021226298010.3390/ijms22062980Open DOISearch in Google Scholar
Indellicato R, Trinchera M. Epigenetic regulation of glycosylation. Advances in Experimental Medicine and Biology. 2021;1325: 173–186. doi: 10.1007/978-3-030-70115-4_8IndellicatoRTrincheraMEpigenetic regulation of glycosylationAdvances in Experimental Medicine and Biology2021132517318610.1007/978-3-030-70115-4_8Open DOISearch in Google Scholar
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. American Journal of Physiology. Cell Physiology. 2022;322(5): C849–C864. doi: 10.1152/ajpcell.00085.2022BasuAPatelNGNicholsonEDWeissRJSpatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human diseaseAmerican Journal of Physiology. Cell Physiology20223225C849C86410.1152/ajpcell.00085.2022Open DOISearch in Google Scholar
Lauc G, Kristic J, Zoldos V. Glycans – the third revolution in evolution. Frontiers in Genetics. 2014;5: 145. doi: 10.3389/fgene.2014.00145LaucGKristicJZoldosVGlycans – the third revolution in evolutionFrontiers in Genetics2014514510.3389/fgene.2014.00145Open DOISearch in Google Scholar
Stambuk T, Klasic M, Zoldos V, Lauc G. N-glycans as functional effectors of genetic and epigenetic disease risk. Molecular Aspects of Medicine. 2021;79: 100891. doi: 10.1016/j.mam.2020.100891StambukTKlasicMZoldosVLaucGN-glycans as functional effectors of genetic and epigenetic disease riskMolecular Aspects of Medicine20217910089110.1016/j.mam.2020.100891Open DOISearch in Google Scholar
Nothaft H, Szymanski CM. New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox. Current Opinion in Chemical Biology. 2019;53: 16–24. doi: 10.1016/j.cbpa.2019.05.032NothaftHSzymanskiCMNew discoveries in bacterial N-glycosylation to expand the synthetic biology toolboxCurrent Opinion in Chemical Biology201953162410.1016/j.cbpa.2019.05.032Open DOISearch in Google Scholar
Valguarnera E, Kinsella RL, Feldman MF. Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis. Journal of Molecular Biology. 2016;428(16): 3206–3220. doi: 10.1016/j.jmb.2016.04.013ValguarneraEKinsellaRLFeldmanMFSugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesisJournal of Molecular Biology2016428163206322010.1016/j.jmb.2016.04.013Open DOISearch in Google Scholar
Nothaft H, Szymanski CM. Bacterial protein N-glycosylation: new perspectives and applications. Journal of Biological Chemistry. 2013;288(10): 6912–6920. doi: 10.1074/jbc.R112.417857NothaftHSzymanskiCMBacterial protein N-glycosylation: new perspectives and applicationsJournal of Biological Chemistry2013288106912692010.1074/jbc.R112.417857Open DOISearch in Google Scholar
Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science (New York, NY). 2002;298(5599): 1790–1793. doi: 10.1126/science.298.5599.1790WackerMLintonDHitchenPGNita-LazarMHaslamSMNorthSJN-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coliScience (New York, NY)200229855991790179310.1126/science.298.5599.1790Open DOISearch in Google Scholar
Lombard J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biology Direct. 2016;11: 36. doi: 10.1186/s13062-016-0137-2LombardJThe multiple evolutionary origins of the eukaryotic N-glycosylation pathwayBiology Direct2016113610.1186/s13062-016-0137-2Open DOISearch in Google Scholar
Meyer BH, Albers SV, Eichler J, Aebi M. Archaea. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.297–306.MeyerBHAlbersSVEichlerJAebiMArchaeaIn:VarkiACummingsRDEskoJDStanleyPHartGWAebiM(eds.)Essentials of glycobiology4th ed.Cold Spring Harbor (NY)Cold Spring Harbor Press2022297306Search in Google Scholar
Eichler J. N-glycosylation in Archaea-New roles for an ancient posttranslational modification. Molecular Microbiology. 2020;114(5): 735–741. doi: 10.1111/mmi.14569EichlerJN-glycosylation in Archaea-New roles for an ancient posttranslational modificationMolecular Microbiology2020114573574110.1111/mmi.14569Open DOISearch in Google Scholar
Bai L, Wang T, Zhao G, Kovach A, Li H. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature. 2018;555(7696): 328–333. doi: 10.1038/nature25755BaiLWangTZhaoGKovachALiHThe atomic structure of a eukaryotic oligosaccharyltransferase complexNature2018555769632833310.1038/nature25755Open DOISearch in Google Scholar
Wang P, Wang H, Gai J, Tian X, Zhang X, Lv Y, et al. Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Scientific Reports. 2017;7: 40301. doi: 10.1038/srep40301WangPWangHGaiJTianXZhangXLvYEvolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungiScientific Reports201774030110.1038/srep40301Open DOISearch in Google Scholar
Neme R, Tautz D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics. 2013;14: 117. doi: 10.1186/1471-2164-14-117NemeRTautzDPhylogenetic patterns of emergence of new genes support a model of frequent de novo evolutionBMC Genomics20131411710.1186/1471-2164-14-117Open DOISearch in Google Scholar
Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Letters. 2022;596(18): 2345–2363. doi: 10.1002/1873-3468.14457SantosTCBDingjanTFutermanAHThe sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathwayFEBS Letters2022596182345236310.1002/1873-3468.14457Open DOISearch in Google Scholar
Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science (New York, NY). 2006;311(5762): 796–800. doi: 10.1126/science.1113832DavidsonEHErwinDHGene regulatory networks and the evolution of animal body plansScience (New York, NY)2006311576279680010.1126/science.1113832Open DOISearch in Google Scholar
Davidson EH, Erwin DH. Evolutionary innovation and stability in animal gene networks. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution. 2010;314(3): 182–186. doi: 10.1002/jez.b.21329DavidsonEHErwinDHEvolutionary innovation and stability in animal gene networksJournal of Experimental Zoology. Part B, Molecular and Developmental Evolution2010314318218610.1002/jez.b.21329Open DOISearch in Google Scholar
Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell. 2011;144(6): 970–985. doi: 10.1016/j.cell.2011.02.017PeterISDavidsonEHEvolution of gene regulatory networks controlling body plan developmentCell2011144697098510.1016/j.cell.2011.02.017Open DOISearch in Google Scholar
Erwin DH, Davidson EH. The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics. 2009;10(2): 141–148. doi: 10.1038/nrg2499ErwinDHDavidsonEHThe evolution of hierarchical gene regulatory networksNature Reviews Genetics200910214114810.1038/nrg2499Open DOISearch in Google Scholar
Frankel N, Wang S, Stern DL. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(51): 20975–20979. doi: 10.1073/pnas.1207715109FrankelNWangSSternDLConserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolutionProceedings of the National Academy of Sciences of the United States of America201210951209752097910.1073/pnas.1207715109Open DOISearch in Google Scholar
Hynes RO. The evolution of metazoan extracellular matrix. The Journal of Cell Biology. 2012;196(6): 671–679. doi: 10.1083/jcb.201109041HynesROThe evolution of metazoan extracellular matrixThe Journal of Cell Biology2012196667167910.1083/jcb.201109041Open DOISearch in Google Scholar
Meyer SM. Darwin’s Doubt: the explosive origin of animal life and the case for intelligent design. New York, NY: Harper Collins; 2013. p.498.MeyerSMDarwin’s Doubt: the explosive origin of animal life and the case for intelligent designNew York, NYHarper Collins2013498Search in Google Scholar
Noble D. Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology? The Journal of Physiology. 2011;589(Pt 5): 1007–1015. doi: 10.1113/jphysiol.2010.201384NobleDNeo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology?The Journal of Physiology2011589Pt 51007101510.1113/jphysiol.2010.201384Open DOISearch in Google Scholar
Noble D, Noble R. Origins and demise of selfish gene theory. Theoretical Biology Forum. 2022;115(1–2): 29–43. doi: 10.19272/202211402003NobleDNobleROrigins and demise of selfish gene theoryTheoretical Biology Forum20221151–2294310.19272/202211402003Open DOISearch in Google Scholar
Wells J. Membrane patterns carry ontogenetic information that is specified indpendently of DNA. BIO-Complexity. 2014;2014(2): 1–28. doi: 10.5048/BIO-C.2014.2WellsJMembrane patterns carry ontogenetic information that is specified indpendently of DNABIO-Complexity20142014212810.5048/BIO-C.2014.2Open DOISearch in Google Scholar
Vane-Wright RI, Corning PA. Teleonomy in living systems: an overview. Biological Journal of the Linnean Society. 2023;139: 341–356. doi: 10.1093/biolinnean/blad037Vane-WrightRICorningPATeleonomy in living systems: an overviewBiological Journal of the Linnean Society202313934135610.1093/biolinnean/blad037Open DOISearch in Google Scholar
Babcock G, McShea DW. Resolving teleology’s false dilemma. Biological Journal of the Linnean Society. 2023;139(4): 415–432. doi: 10.1093/biolinnean/blac058BabcockGMcSheaDWResolving teleology’s false dilemmaBiological Journal of the Linnean Society2023139441543210.1093/biolinnean/blac058Open DOISearch in Google Scholar
Gontier N. Teleonomy as a problem of self-causation. Biological Journal of the Linnean Society. 2023;139(4): 388–414. doi: 10.1093/biolinnean/blac111GontierNTeleonomy as a problem of self-causationBiological Journal of the Linnean Society2023139438841410.1093/biolinnean/blac111Open DOISearch in Google Scholar
Heylighen F. The meaning and origin of goal-directedness: a dynamical systems perspective. Biological Journal of the Linnean Society. 2023;139: 370–389. doi: 10.1093/biolinnean/blac060HeylighenFThe meaning and origin of goal-directedness: a dynamical systems perspectiveBiological Journal of the Linnean Society202313937038910.1093/biolinnean/blac060Open DOISearch in Google Scholar