Open Access

The Complexity of Glycan Structures, Functions, and Origins

  
Dec 31, 2024

Cite
Download Cover

Cummings RD. Evolution and diversity of glycomolecules from unicellular organisms to humans. BioCosmos. 2024;1: 1–35. doi: 10.2478/biocosmos-2024-0001 CummingsRD Evolution and diversity of glycomolecules from unicellular organisms to humans BioCosmos 2024 1 1 35 10.2478/biocosmos-2024-0001 Open DOISearch in Google Scholar

Walt D, Aoki-Kinoshita KF, Bertozzi CR, Boons G-J, Darvill A, Hart G, et al. Transforming glycoscience: a roadmap for the future. Vol. 2012. Washington, DC: The National Academy Press; 2012. p.191. WaltD Aoki-KinoshitaKF BertozziCR BoonsG-J DarvillA HartG Transforming glycoscience: a roadmap for the future 2012 Washington, DC The National Academy Press 2012 191 Search in Google Scholar

Varki A, Kornfeld S. Historical background and overview. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.1–20. VarkiA KornfeldS Historical background and overview In: VarkiA CummingsRD EskoJD StanleyP HartGW (eds.) Essentials of glycobiology Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 1 20 Search in Google Scholar

Zoldos V, Horvat T, Lauc G. Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies. Current Opinion in Chemical Biology. 2013;17(1): 34–40. doi: 10.1016/j.cbpa.2012.12.007 ZoldosV HorvatT LaucG Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies Current Opinion in Chemical Biology 2013 17 1 34 40 10.1016/j.cbpa.2012.12.007 Open DOISearch in Google Scholar

Lauc G, Vojta A, Zoldos V. Epigenetic regulation of glycosylation is the quantum mechanics of biology. Biochimica et Biophysica Acta. 2014;1840(1): 65–70. doi: 10.1016/j.bbagen.2013.08.017 LaucG VojtaA ZoldosV Epigenetic regulation of glycosylation is the quantum mechanics of biology Biochimica et Biophysica Acta 2014 1840 1 65 70 10.1016/j.bbagen.2013.08.017 Open DOISearch in Google Scholar

Sackstein R, Hoffmeister KM, Stowell SR, Kinoshita T, Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.615–630. SacksteinR HoffmeisterKM StowellSR KinoshitaT VarkiA FreezeHH Glycans in acquired human diseases In: VarkiA CummingsRD EskoJD StanleyP HartGW (eds.) Essentials of glycobiology Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 615 630 Search in Google Scholar

Kristic J, Lauc G. Ubiquitous importance of protein glycosylation. Methods in Molecular Biology (Clifton, NJ). 2017;1503: 1–12. doi: 10.1007/978-1-4939-6493-2_1 KristicJ LaucG Ubiquitous importance of protein glycosylation Methods in Molecular Biology (Clifton, NJ) 2017 1503 1 12 10.1007/978-1-4939-6493-2_1 Open DOISearch in Google Scholar

Lauc G, Zoldos V. Epigenetic regulation of glycosylation could be a mechanism used by complex organisms to compete with microbes on an evolutionary scale. Medical Hypotheses. 2009;73: 510–512. doi: 10.1016/j.mehy.2009.03.059 LaucG ZoldosV Epigenetic regulation of glycosylation could be a mechanism used by complex organisms to compete with microbes on an evolutionary scale Medical Hypotheses 2009 73 510 512 10.1016/j.mehy.2009.03.059 Open DOISearch in Google Scholar

Freeze HH, Kinoshita T, Varki A. Chapter 46 glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2017. p. 521–526. FreezeHH KinoshitaT VarkiA Chapter 46 glycans in acquired human diseases In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 3rd ed. Cold Spring Harbor, NY Cold Spring Harbor Press 2017 521 526 Search in Google Scholar

Varki A, Kannagi R, Toole B, Stanley P. Chapter 47 glycosylation changes in cancer. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Press; 2017. p. 597–609. VarkiA KannagiR TooleB StanleyP Chapter 47 glycosylation changes in cancer In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 3rd ed. Cold Spring Harbor, NY Cold Spring Harbor Press 2017 597 609 Search in Google Scholar

Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annual Review of Immunology. 2007;25: 21–50. doi: 10.1146/annurev.immunol.25.022106.141702 ArnoldJN WormaldMR SimRB RuddPM DwekRA The impact of glycosylation on the biological function and structure of human immunoglobulins Annual Review of Immunology 2007 25 21 50 10.1146/annurev.immunol.25.022106.141702 Open DOISearch in Google Scholar

Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annual Review of Biochemistry. 1988;57: 785–838. doi: 10.1146/annurev.bi.57.070188.004033 RademacherTW ParekhRB DwekRA Glycobiology Annual Review of Biochemistry 1988 57 785 838 10.1146/annurev.bi.57.070188.004033 Open DOISearch in Google Scholar

Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth CW, Seeberger PH. Exploring the structural diversity of mammalian carbohydrates (‘glycospace’) by statistical databank analysis. ACS Chemical Biology. 2007;2(10): 685–691. doi: 10.1021/cb700178s WerzDB RanzingerR HergetS AdibekianA von der LiethCW SeebergerPH Exploring the structural diversity of mammalian carbohydrates (‘glycospace’) by statistical databank analysis ACS Chemical Biology 2007 2 10 685 691 10.1021/cb700178s Open DOISearch in Google Scholar

Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 1994;4(6): 759–767. doi: 10.1093/glycob/4.6.759 LaineRA A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems Glycobiology 1994 4 6 759 767 10.1093/glycob/4.6.759 Open DOISearch in Google Scholar

Stanley P, Moremen KW, Lewis NE, Taniguchi N, Aebi M. N-glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.103–116. StanleyP MoremenKW LewisNE TaniguchiN AebiM N-glycans In: VarkiA CummingsRD EskoJD StanleyP HartGW (eds.) Essentials of glycobiology Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 103 116 Search in Google Scholar

Stanley P, Wuhrer M, Lauc G, Stowell SR, Cummings RD. Structures common to different glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.165–184. StanleyP WuhrerM LaucG StowellSR CummingsRD Structures common to different glycans In: VarkiA CummingsRD EskoJD StanleyP HartGW (eds.) Essentials of glycobiology Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 165 184 Search in Google Scholar

Lauc G, Zoldos V. Protein glycosylation – an evolutionary crossroad between genes and environment. Molecular bioSystems. 2010;6(12): 2373–2379. doi: 10.1039/c0mb00067a LaucG ZoldosV Protein glycosylation – an evolutionary crossroad between genes and environment Molecular bioSystems 2010 6 12 2373 2379 10.1039/c0mb00067a Open DOISearch in Google Scholar

Wang TT. IgG Fc glycosylation in human immunity. Current Topics in Microbiology and Immunology. 2019;423: 63–75. doi: 10.1007/82_2019_152 WangTT IgG Fc glycosylation in human immunity Current Topics in Microbiology and Immunology 2019 423 63 75 10.1007/82_2019_152 Open DOISearch in Google Scholar

Kristic J, Lauc G, Pezer M. Immunoglobulin G glycans – biomarkers and molecular effectors of aging. Clinica Chimica Acta. 2022;535: 30–45. doi: 10.1016/j.cca.2022.08.006 KristicJ LaucG PezerM Immunoglobulin G glycans – biomarkers and molecular effectors of aging Clinica Chimica Acta 2022 535 30 45 10.1016/j.cca.2022.08.006 Open DOISearch in Google Scholar

André S, Kaltner H, Manning JC, Murphy PV, Gabius HJ. Lectins: getting familiar with translators of the sugar code. Molecules (Basel, Switzerland). 2015;20(2): 1788–1823. doi: 10.3390/molecules20021788 AndréS KaltnerH ManningJC MurphyPV GabiusHJ Lectins: getting familiar with translators of the sugar code Molecules (Basel, Switzerland) 2015 20 2 1788 1823 10.3390/molecules20021788 Open DOISearch in Google Scholar

Rudiger H, Gabius HJ. The biochemical basis and coding capacity of the sugar code. In: Gabius HJ. (ed.) The sugar code: fundamentals of glycosciences. Weinheim: Wiley-Blackwell; 2009. p. 3–14. RudigerH GabiusHJ The biochemical basis and coding capacity of the sugar code In: GabiusHJ (ed.) The sugar code: fundamentals of glycosciences Weinheim Wiley-Blackwell 2009 3 14 Search in Google Scholar

Lombard J. Early evolution of polyisoprenol biosynthesis and the origin of cell walls. PeerJ. 2016;4: e2626. doi: 10.7717/peerj.2626 LombardJ Early evolution of polyisoprenol biosynthesis and the origin of cell walls PeerJ 2016 4 e2626 10.7717/peerj.2626 Open DOISearch in Google Scholar

Eichler J, Guan Z. Lipid sugar carriers at the extremes: the phosphodolichols archaea use in N-glycosylation. Biochimica et biophysica acta. Molecular and Cell Biology of Lipids. 2017;1862(6): 589–599. doi: 10.1016/j.bbalip.2017.03.005 EichlerJ GuanZ Lipid sugar carriers at the extremes: the phosphodolichols archaea use in N-glycosylation Biochimica et biophysica acta. Molecular and Cell Biology of Lipids 2017 1862 6 589 599 10.1016/j.bbalip.2017.03.005 Open DOISearch in Google Scholar

Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research. 2014;42(Database issue): D490–D495. doi: 10.1093/nar/gkt1178 LombardV Golaconda RamuluH DrulaE CoutinhoPM HenrissatB The carbohydrate-active enzymes database (CAZy) in 2013 Nucleic Acids Research 2014 42 Database issue D490 D495 10.1093/nar/gkt1178 Open DOISearch in Google Scholar

Guay KP, Ke H, Canniff NP, George GT, Eyles SJ, Mariappan M, et al. ER chaperones use a protein folding and quality control glycocode. Molecular Cell. 2023;83(24): 4524–4537.e5. doi: 10.1016/j.molcel.2023.11.006 GuayKP KeH CanniffNP GeorgeGT EylesSJ MariappanM ER chaperones use a protein folding and quality control glycocode Molecular Cell 2023 83 24 4524 4537.e5 10.1016/j.molcel.2023.11.006 Open DOISearch in Google Scholar

Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Letters. 2015;589(22): 3379–3387. doi: 10.1016/j.febslet.2015.07.021 CarameloJJ ParodiAJ A sweet code for glycoprotein folding FEBS Letters 2015 589 22 3379 3387 10.1016/j.febslet.2015.07.021 Open DOISearch in Google Scholar

Suzuki T, Cummings RD, Aebi M, Parodi A. Glycans in glycoprotein quality control. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.529–538. SuzukiT CummingsRD AebiM ParodiA Glycans in glycoprotein quality control In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th ed. Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 529 538 Search in Google Scholar

Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell. 2021;184(9): 2412–2429.e16. doi: 10.1016/j.cell.2021.03.035 WeigelAV ChangCL ShtengelG XuCS HoffmanDP FreemanM ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER Cell 2021 184 9 2412 2429.e16 10.1016/j.cell.2021.03.035 Open DOISearch in Google Scholar

Colley KJ, Varki A, Haltiwanger RS, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.43–52. ColleyKJ VarkiA HaltiwangerRS KinoshitaT Cellular organization of glycosylation In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th ed. Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 43 52 Search in Google Scholar

Connerly PL. How do proteins move through the Golgi apparatus? Nature Education. 2010;3(9): 60–66. doi: www.nature.com/scitable/topicpage/how-do-proteins-move-through-the-golgi-14397318/ ConnerlyPL How do proteins move through the Golgi apparatus? Nature Education 2010 3 9 60 66 doi: www.nature.com/scitable/topicpage/how-do-proteins-move-through-the-golgi-14397318/ Search in Google Scholar

D’Souza Z, Blackburn JB, Kudlyk T, Pokrovskaya ID, Lupashin VV. Defects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cells. Frontiers in Cell and Developmental Biology. 2019;7: 118. doi: 10.3389/fcell.2019.00118 D’SouzaZ BlackburnJB KudlykT PokrovskayaID LupashinVV Defects in COG-mediated Golgi trafficking alter endo-lysosomal system in human cells Frontiers in Cell and Developmental Biology 2019 7 118 10.3389/fcell.2019.00118 Open DOISearch in Google Scholar

Blackburn JB, D’Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Letters. 2019;593(17): 2466–2487. doi: 10.1002/1873-3468.13570 BlackburnJB D’SouzaZ LupashinVV Maintaining order: COG complex controls Golgi trafficking, processing, and sorting FEBS Letters 2019 593 17 2466 2487 10.1002/1873-3468.13570 Open DOISearch in Google Scholar

Toustou C, Walet-Balieu ML, Kiefer-Meyer MC, Houdou M, Lerouge P, Foulquier F, et al. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes. Biological Reviews of the Cambridge Philosophical Society. 2022;97(2): 732–748. doi: 10.1111/brv.12820 ToustouC Walet-BalieuML Kiefer-MeyerMC HoudouM LerougeP FoulquierF Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes Biological Reviews of the Cambridge Philosophical Society 2022 97 2 732 748 10.1111/brv.12820 Open DOISearch in Google Scholar

Gagneux P, Hennet T, Varki A. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.79–92. GagneuxP HennetT VarkiA Biological functions of glycans In: VarkiA CummingsRD EskoJD StanleyP HartGW (eds.) Essentials of glycobiology Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 79 92 Search in Google Scholar

Taylor ME, Drickamer K, Imberty A, van Kooyk Y, Schnaar RL, Etzler ME, et al. Discovery and classification of glycan-binding proteins. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al. (eds.) Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.375–386. TaylorME DrickamerK ImbertyA van KooykY SchnaarRL EtzlerME Discovery and classification of glycan-binding proteins In: VarkiA CummingsRD EskoJD StanleyP HartGW (eds.) Essentials of glycobiology Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 375 386 Search in Google Scholar

Bournazos S, Ravetch JV. Fcgamma receptor pathways during active and passive immunization. Immunological Reviews. 2015;268(1): 88–103. doi: 10.1111/imr.12343 BournazosS RavetchJV Fcgamma receptor pathways during active and passive immunization Immunological Reviews 2015 268 1 88 103 10.1111/imr.12343 Open DOISearch in Google Scholar

Lux A, Nimmerjahn F. Impact of differential glycosylation on IgG activity. Advances in Experimental Medicine and Biology. 2011;780: 113–124. doi: 10.1007/978-1-4419-5632-3_10 LuxA NimmerjahnF Impact of differential glycosylation on IgG activity Advances in Experimental Medicine and Biology 2011 780 113 124 10.1007/978-1-4419-5632-3_10 Open DOISearch in Google Scholar

Bournazos S, Ravetch JV. Diversification of IgG effector functions. International Immunology. 2017;29(7): 303–310. doi: 10.1093/intimm/dxx025 BournazosS RavetchJV Diversification of IgG effector functions International Immunology 2017 29 7 303 310 10.1093/intimm/dxx025 Open DOISearch in Google Scholar

Bournazos S, Ravetch JV. Fcgamma receptor function and the design of vaccination strategies. Immunity. 2017;47(2): 224–233. doi: 10.1016/j.immuni.2017.07.009 BournazosS RavetchJV Fcgamma receptor function and the design of vaccination strategies Immunity 2017 47 2 224 233 10.1016/j.immuni.2017.07.009 Open DOISearch in Google Scholar

Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, et al. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochimica et Biophysica Acta. 2006;1760(4): 693–700. doi: 10.1016/j.bbagen.2005.10.002 YamaguchiY NishimuraM NaganoM YagiH SasakawaH UchidaK Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy Biochimica et Biophysica Acta 2006 1760 4 693 700 10.1016/j.bbagen.2005.10.002 Open DOISearch in Google Scholar

Yamaguchi Y, Barb AW. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology. 2020;30(4): 214–225. doi: 10.1093/glycob/cwz068 YamaguchiY BarbAW A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function Glycobiology 2020 30 4 214 225 10.1093/glycob/cwz068 Open DOISearch in Google Scholar

Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General mechanism for modulating immunoglobulin effector function. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(24): 9868–9872. doi: 10.1073/pnas.1307864110 SondermannP PinceticA MaamaryJ LammensK RavetchJV General mechanism for modulating immunoglobulin effector function Proceedings of the National Academy of Sciences of the United States of America 2013 110 24 9868 9872 10.1073/pnas.1307864110 Open DOISearch in Google Scholar

Kronimus Y, Dodel R, Galuska SP, Neumann S. IgG Fc N-glycosylation: alterations in neurologic diseases and potential therapeutic target? Journal of Autoimmunity. 2019;96: 14–23. doi: 10.1016/j.jaut.2018.10.006 KronimusY DodelR GaluskaSP NeumannS IgG Fc N-glycosylation: alterations in neurologic diseases and potential therapeutic target? Journal of Autoimmunity 2019 96 14 23 10.1016/j.jaut.2018.10.006 Open DOISearch in Google Scholar

Maverakis E, Kim K, Shimoda M, Gershwin ME, Patel F, Wilken R, et al. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. Journal of Autoimmunity. 2015;57: 1–13. doi: 10.1016/j.jaut.2014.12.002 MaverakisE KimK ShimodaM GershwinME PatelF WilkenR Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review Journal of Autoimmunity 2015 57 1 13 10.1016/j.jaut.2014.12.002 Open DOISearch in Google Scholar

Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science (New York, NY). 2002;296(5566): 298–300. doi: 10.1126/science.1068883 MedzhitovR JanewayCAJr Decoding the patterns of self and nonself by the innate immune system Science (New York, NY) 2002 296 5566 298 300 10.1126/science.1068883 Open DOISearch in Google Scholar

Parekh RB, Tse AGD, Dwek RA, Williams AF, Rademacher TW. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. The EMBO Journal. 1987;6: 1233–1244. doi: 10.1002/j.1460-2075.1987.tb02359.x ParekhRB TseAGD DwekRA WilliamsAF RademacherTW Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1 The EMBO Journal 1987 6 1233 1244 10.1002/j.1460-2075.1987.tb02359.x Open DOISearch in Google Scholar

Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, et al. A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities. ACS Chemical Biology. 2022;17(11): 2993–3012. doi: 10.1021/acschembio.1c00689 BojarD MecheL MengG EngW SmithDF CummingsRD A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities ACS Chemical Biology 2022 17 11 2993 3012 10.1021/acschembio.1c00689 Open DOISearch in Google Scholar

Zeng X, Novotny MV, Clemmer DE, Trinidad JC. A graphical representation of glycan heterogeneity. Glycobiology. 2022;32(3): 201–207. doi: 10.1093/glycob/cwab116 ZengX NovotnyMV ClemmerDE TrinidadJC A graphical representation of glycan heterogeneity Glycobiology 2022 32 3 201 207 10.1093/glycob/cwab116 Open DOISearch in Google Scholar

Lis H, Sharon N. Protein glycosylation. Structural and functional aspects. European Journal of Biochemistry/FEBS. 1993;218(1): 1–27. doi: 10.1111/j.1432-1033.1993.tb18347.x LisH SharonN Protein glycosylation. Structural and functional aspects European Journal of Biochemistry/FEBS 1993 218 1 1 27 10.1111/j.1432-1033.1993.tb18347.x Open DOISearch in Google Scholar

Sharon N, Lis H. Carbohydrates in cell recognition. Scientific American. 1993;268(1): 82–89. doi: 10.1038/scientificamerican0193-82 SharonN LisH Carbohydrates in cell recognition Scientific American 1993 268 1 82 89 10.1038/scientificamerican0193-82 Open DOISearch in Google Scholar

Rodrigues JG, Balmaña M, Macedo JA, Poças J, Fernandes Â, de-Freitas-Junior JCM, et al. Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis. Cellular Immunology. 2018;333: 46–57. doi: 10.1016/j.cellimm.2018.03.007 RodriguesJG BalmañaM MacedoJA PoçasJ Fernandes de-Freitas-JuniorJCM Glycosylation in cancer: selected roles in tumour progression, immune modulation and metastasis Cellular Immunology 2018 333 46 57 10.1016/j.cellimm.2018.03.007 Open DOISearch in Google Scholar

Fernandes Â, Azevedo CM, Silva MC, Faria G, Dantas CS, Vicente MM, et al. Glycans as shapers of tumour microenvironment: a sweet driver of T-cell-mediated anti-tumour immune response. Immunology. 2023;168(2): 217–232. doi: 10.1111/imm.13494 Fernandes AzevedoCM SilvaMC FariaG DantasCS VicenteMM Glycans as shapers of tumour microenvironment: a sweet driver of T-cell-mediated anti-tumour immune response Immunology 2023 168 2 217 232 10.1111/imm.13494 Open DOISearch in Google Scholar

Kong Y, Chen H, Chen M, Li Y, Li J, Liu Q, et al. Abnormal ECA-binding membrane glycans and galactosylated CAT and P4HB in lesion tissues as potential biomarkers for hepatocellular carcinoma diagnosis. Frontiers in Oncology. 2022;12: 855952. doi: 10.3389/fonc.2022.855952 KongY ChenH ChenM LiY LiJ LiuQ Abnormal ECA-binding membrane glycans and galactosylated CAT and P4HB in lesion tissues as potential biomarkers for hepatocellular carcinoma diagnosis Frontiers in Oncology 2022 12 855952 10.3389/fonc.2022.855952 Open DOISearch in Google Scholar

Ma T, Wang Y, Jia L, Shu J, Yu H, Du H, et al. Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma. RSC Advances. 2019;9(38): 22064–22073. doi: 10.1039/C9RA04341A MaT WangY JiaL ShuJ YuH DuH Increased expression of core-fucosylated glycans in human lung squamous cell carcinoma RSC Advances 2019 9 38 22064 22073 10.1039/C9RA04341A Open DOISearch in Google Scholar

Liu L, Li D, Shu J, Wang L, Zhang F, Zhang C, et al. Protein glycopatterns in bronchoalveolar lavage fluid as novel potential biomarkers for diagnosis of lung cancer. Frontiers in Oncology. 2020;10: 568433. doi: 10.3389/fonc.2020.568433 LiuL LiD ShuJ WangL ZhangF ZhangC Protein glycopatterns in bronchoalveolar lavage fluid as novel potential biomarkers for diagnosis of lung cancer Frontiers in Oncology 2020 10 568433 10.3389/fonc.2020.568433 Open DOISearch in Google Scholar

Yang G, Tan Z, Lu W, Guo J, Yu H, Yu J, et al. Quantitative glycome analysis of N-glycan patterns in bladder cancer vs normal bladder cells using an integrated strategy. Journal of Proteome Research. 2015;14(2): 639–653. doi: 10.1021/pr5006026 YangG TanZ LuW GuoJ YuH YuJ Quantitative glycome analysis of N-glycan patterns in bladder cancer vs normal bladder cells using an integrated strategy Journal of Proteome Research 2015 14 2 639 653 10.1021/pr5006026 Open DOISearch in Google Scholar

Yang J, Liu X, Shu J, Hou Y, Chen M, Yu H, et al. Abnormal Galactosylated-Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast Cancer. Glycoconjugate Journal. 2020;37(3): 373–394. doi: 10.1007/s10719-020-09910-6 YangJ LiuX ShuJ HouY ChenM YuH Abnormal Galactosylated-Glycans recognized by Bandeiraea Simplicifolia Lectin I in saliva of patients with breast Cancer Glycoconjugate Journal 2020 37 3 373 394 10.1007/s10719-020-09910-6 Open DOISearch in Google Scholar

Yu H, Li X, Chen M, Zhang F, Liu X, Yu J, et al. Integrated glycome strategy for characterization of aberrant LacNAc contained N-glycans associated with gastric carcinoma. Frontiers in Oncology. 2019;9: 636. doi: 10.3389/fonc.2019.00636 YuH LiX ChenM ZhangF LiuX YuJ Integrated glycome strategy for characterization of aberrant LacNAc contained N-glycans associated with gastric carcinoma Frontiers in Oncology 2019 9 636 10.3389/fonc.2019.00636 Open DOISearch in Google Scholar

Zhu H, Liu M, Yu H, Liu X, Zhong Y, Shu J, et al. Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy. Journal of Diabetes Research. 2017;2017: 5728087. doi: 10.1155/2017/5728087 ZhuH LiuM YuH LiuX ZhongY ShuJ Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy Journal of Diabetes Research 2017 2017 5728087 10.1155/2017/5728087 Open DOISearch in Google Scholar

Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2022;24(10): 1865–1880. doi: 10.1007/s12094-022-02858-z PuC Biyuan XuK ZhaoY Glycosylation and its research progress in endometrial cancer Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2022 24 10 1865 1880 10.1007/s12094-022-02858-z Open DOISearch in Google Scholar

Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Advances in Cancer Research. 2023;157: 123–155. doi: 10.1016/bs.acr.2022.07.003 MarcielMP HaldarB HwangJ BhaleraoN BellisSL Role of tumor cell sialylation in pancreatic cancer progression Advances in Cancer Research 2023 157 123 155 10.1016/bs.acr.2022.07.003 Open DOISearch in Google Scholar

Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in pancreatic cancer and beyond. The Journal of Experimental Medicine. 2022;219(6): e20211505. doi: 10.1084/jem.20211505 LumibaoJC TremblayJR HsuJ EngleDD Altered glycosylation in pancreatic cancer and beyond The Journal of Experimental Medicine 2022 219 6 e20211505 10.1084/jem.20211505 Open DOISearch in Google Scholar

Godefa TM, Derks S, Thijssen V. Galectins in esophageal cancer: current knowledge and future perspectives. Cancers (Basel). 2022;14(23): 5790. doi: 10.3390/cancers14235790 GodefaTM DerksS ThijssenV Galectins in esophageal cancer: current knowledge and future perspectives Cancers (Basel) 2022 14 23 5790 10.3390/cancers14235790 Open DOISearch in Google Scholar

In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2022. In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th ed. Cold Spring Harbor (NY) Cold Spring Harbor Laboratory Press 2022 Search in Google Scholar

Neelamegham S, Mahal LK. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Current Opinion in Structural Biology. 2016;40: 145–152. doi: 10.1016/j.sbi.2016.09.013 NeelameghamS MahalLK Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure Current Opinion in Structural Biology 2016 40 145 152 10.1016/j.sbi.2016.09.013 Open DOISearch in Google Scholar

Dall’Olio F, Trinchera M. Epigenetic bases of aberrant glycosylation in cancer. International Journal of Molecular Sciences. 2017;18(5): 998. doi: 10.3390/ijms18050998 Dall’OlioF TrincheraM Epigenetic bases of aberrant glycosylation in cancer International Journal of Molecular Sciences 2017 18 5 998 10.3390/ijms18050998 Open DOISearch in Google Scholar

Groth T, Gunawan R, Neelamegham S. A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis. Beilstein Journal of Organic Chemistry. 2021;17: 1712–1724. doi: 10.3762/bjoc.17.119 GrothT GunawanR NeelameghamS A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis Beilstein Journal of Organic Chemistry 2021 17 1712 1724 10.3762/bjoc.17.119 Open DOISearch in Google Scholar

Thu CT, Mahal LK. Sweet control: microRNA regulation of the glycome. Biochemistry. 2020;59(34): 3098–3110. doi: 10.1021/acs.biochem.9b00784 ThuCT MahalLK Sweet control: microRNA regulation of the glycome Biochemistry 2020 59 34 3098 3110 10.1021/acs.biochem.9b00784 Open DOISearch in Google Scholar

Halfon MS. Perspectives on gene regulatory network evolution. Trends in Genetics: TIG. 2017;33(7): 436–447. doi: 10.1016/j.tig.2017.04.005 HalfonMS Perspectives on gene regulatory network evolution Trends in Genetics: TIG 2017 33 7 436 447 10.1016/j.tig.2017.04.005 Open DOISearch in Google Scholar

Schember I, Halfon MS. Common themes and future challenges in understanding gene regulatory network evolution. Cells. 2022;11(3): 510. doi: 10.3390/cells11030510 SchemberI HalfonMS Common themes and future challenges in understanding gene regulatory network evolution Cells 2022 11 3 510 10.3390/cells11030510 Open DOISearch in Google Scholar

Frankel N. Multiple layers of complexity in cis-regulatory regions of developmental genes. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2012;241(12): 1857–1866. doi: 10.1002/dvdy.23871 FrankelN Multiple layers of complexity in cis-regulatory regions of developmental genes Developmental Dynamics: An Official Publication of the American Association of Anatomists 2012 241 12 1857 1866 10.1002/dvdy.23871 Open DOISearch in Google Scholar

Davidson EH. Evolutionary bioscience as regulatory systems biology. Developmental Biology. 2011;357(1): 35–40. doi: 10.1016/j.ydbio.2011.02.004 DavidsonEH Evolutionary bioscience as regulatory systems biology Developmental Biology 2011 357 1 35 40 10.1016/j.ydbio.2011.02.004 Open DOISearch in Google Scholar

Agrawal P, Kurcon T, Pilobello KT, Rakus JF, Koppolu S, Liu Z, et al. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(11): 4338–4343. doi: 10.1073/pnas.1321524111 AgrawalP KurconT PilobelloKT RakusJF KoppoluS LiuZ Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode Proceedings of the National Academy of Sciences of the United States of America 2014 111 11 4338 4343 10.1073/pnas.1321524111 Open DOISearch in Google Scholar

Jame-Chenarboo F, Ng HH, Macdonald D, Mahal LK. High-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactions. ACS Central Science. 2022;8(11): 1527–1536. doi: 10.1021/acscentsci.2c00748 Jame-ChenarbooF NgHH MacdonaldD MahalLK High-throughput analysis reveals miRNA upregulating alpha-2,6-sialic acid through direct miRNA-mRNA interactions ACS Central Science 2022 8 11 1527 1536 10.1021/acscentsci.2c00748 Open DOISearch in Google Scholar

Groth T, Diehl AD, Gunawan R, Neelamegham S. GlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontology. Bioinformatics. 2022;38(24): 5413–5420. doi: 10.1093/bioinformatics/btac704 GrothT DiehlAD GunawanR NeelameghamS GlycoEnzOnto: a GlycoEnzyme pathway and molecular function ontology Bioinformatics 2022 38 24 5413 5420 10.1093/bioinformatics/btac704 Open DOISearch in Google Scholar

Kelkar A, Groth T, Neelamegham S. Forward genetic screens of human glycosylation pathways using the GlycoGene CRISPR library. Current Protocols. 2022;2(4): e402. doi: 10.1002/cpz1.402 KelkarA GrothT NeelameghamS Forward genetic screens of human glycosylation pathways using the GlycoGene CRISPR library Current Protocols 2022 2 4 e402 10.1002/cpz1.402 Open DOISearch in Google Scholar

Stewart N, Wisnovsky S. Bridging glycomics and genomics: new uses of functional genetics in the study of cellular glycosylation. Frontiers in Molecular Biosciences. 2022;9: 934584. doi: 10.3389/fmolb.2022.934584 StewartN WisnovskyS Bridging glycomics and genomics: new uses of functional genetics in the study of cellular glycosylation Frontiers in Molecular Biosciences 2022 9 934584 10.3389/fmolb.2022.934584 Open DOISearch in Google Scholar

Lisacek F, Tiemeyer M, Mazumder R, Aoki-Kinoshita KF. Worldwide glycoscience informatics infrastructure: the GlySpace alliance. Journal of the American Chemical Society Au. 2023;3(1): 4–12. doi: 10.1021/jacsau.2c00477 LisacekF TiemeyerM MazumderR Aoki-KinoshitaKF Worldwide glycoscience informatics infrastructure: the GlySpace alliance Journal of the American Chemical Society Au 2023 3 1 4 12 10.1021/jacsau.2c00477 Open DOISearch in Google Scholar

Bojar D, Lisacek F. Glycoinformatics in the artificial intelligence era. Chemical Reviews. 2022;122(20): 15971–15988. doi: 10.1021/acs.chemrev.2c00110 BojarD LisacekF Glycoinformatics in the artificial intelligence era Chemical Reviews 2022 122 20 15971 15988 10.1021/acs.chemrev.2c00110 Open DOISearch in Google Scholar

Hayes C, Daponte V, Mariethoz J, Lisacek F. This is GlycoQL. Bioinformatics (Oxford, England). 2022;38(Suppl_2): ii162–ii167. doi: 10.1093/bioinformatics/btac500 HayesC DaponteV MariethozJ LisacekF This is GlycoQL Bioinformatics (Oxford, England) 2022 38 Suppl_2 ii162 ii167 10.1093/bioinformatics/btac500 Open DOISearch in Google Scholar

Mariethoz J, Alocci D, Karlsson NG, Packer NH, Lisacek F. An interactive view of glycosylation. Methods in Molecular Biology (Clifton, NJ). 2022;2370: 41–65. doi: 10.1007/978-1-0716-1685-7_3 MariethozJ AlocciD KarlssonNG PackerNH LisacekF An interactive view of glycosylation Methods in Molecular Biology (Clifton, NJ) 2022 2370 41 65 10.1007/978-1-0716-1685-7_3 Open DOISearch in Google Scholar

Aoki-Kinoshita KF, Campbell MP, Lisacek F, Neelamegham S, York WS, Packer NH. Glycoinformatics. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p. 705–718. Aoki-KinoshitaKF CampbellMP LisacekF NeelameghamS YorkWS PackerNH Glycoinformatics In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th ed. Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 705 718 Search in Google Scholar

Kasper BT, Koppolu S, Mahal LK. Insights into miRNA regulation of the human glycome. Biochemical and Biophysical Research Communications. 2014;445(4): 774–779. doi: 10.1016/j.bbrc.2014.01.034 KasperBT KoppoluS MahalLK Insights into miRNA regulation of the human glycome Biochemical and Biophysical Research Communications 2014 445 4 774 779 10.1016/j.bbrc.2014.01.034 Open DOISearch in Google Scholar

Indellicato R, Trinchera M. Epigenetic regulation of glycosylation in cancer and other diseases. International Journal of Molecular Sciences. 2021;22(6): 2980. doi: 10.3390/ijms22062980 IndellicatoR TrincheraM Epigenetic regulation of glycosylation in cancer and other diseases International Journal of Molecular Sciences 2021 22 6 2980 10.3390/ijms22062980 Open DOISearch in Google Scholar

Indellicato R, Trinchera M. Epigenetic regulation of glycosylation. Advances in Experimental Medicine and Biology. 2021;1325: 173–186. doi: 10.1007/978-3-030-70115-4_8 IndellicatoR TrincheraM Epigenetic regulation of glycosylation Advances in Experimental Medicine and Biology 2021 1325 173 186 10.1007/978-3-030-70115-4_8 Open DOISearch in Google Scholar

Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. American Journal of Physiology. Cell Physiology. 2022;322(5): C849–C864. doi: 10.1152/ajpcell.00085.2022 BasuA PatelNG NicholsonED WeissRJ Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease American Journal of Physiology. Cell Physiology 2022 322 5 C849 C864 10.1152/ajpcell.00085.2022 Open DOISearch in Google Scholar

Lauc G, Kristic J, Zoldos V. Glycans – the third revolution in evolution. Frontiers in Genetics. 2014;5: 145. doi: 10.3389/fgene.2014.00145 LaucG KristicJ ZoldosV Glycans – the third revolution in evolution Frontiers in Genetics 2014 5 145 10.3389/fgene.2014.00145 Open DOISearch in Google Scholar

Stambuk T, Klasic M, Zoldos V, Lauc G. N-glycans as functional effectors of genetic and epigenetic disease risk. Molecular Aspects of Medicine. 2021;79: 100891. doi: 10.1016/j.mam.2020.100891 StambukT KlasicM ZoldosV LaucG N-glycans as functional effectors of genetic and epigenetic disease risk Molecular Aspects of Medicine 2021 79 100891 10.1016/j.mam.2020.100891 Open DOISearch in Google Scholar

Nothaft H, Szymanski CM. New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox. Current Opinion in Chemical Biology. 2019;53: 16–24. doi: 10.1016/j.cbpa.2019.05.032 NothaftH SzymanskiCM New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox Current Opinion in Chemical Biology 2019 53 16 24 10.1016/j.cbpa.2019.05.032 Open DOISearch in Google Scholar

Valguarnera E, Kinsella RL, Feldman MF. Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis. Journal of Molecular Biology. 2016;428(16): 3206–3220. doi: 10.1016/j.jmb.2016.04.013 ValguarneraE KinsellaRL FeldmanMF Sugar and spice make bacteria not nice: protein glycosylation and its influence in pathogenesis Journal of Molecular Biology 2016 428 16 3206 3220 10.1016/j.jmb.2016.04.013 Open DOISearch in Google Scholar

Nothaft H, Szymanski CM. Bacterial protein N-glycosylation: new perspectives and applications. Journal of Biological Chemistry. 2013;288(10): 6912–6920. doi: 10.1074/jbc.R112.417857 NothaftH SzymanskiCM Bacterial protein N-glycosylation: new perspectives and applications Journal of Biological Chemistry 2013 288 10 6912 6920 10.1074/jbc.R112.417857 Open DOISearch in Google Scholar

Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science (New York, NY). 2002;298(5599): 1790–1793. doi: 10.1126/science.298.5599.1790 WackerM LintonD HitchenPG Nita-LazarM HaslamSM NorthSJ N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli Science (New York, NY) 2002 298 5599 1790 1793 10.1126/science.298.5599.1790 Open DOISearch in Google Scholar

Lombard J. The multiple evolutionary origins of the eukaryotic N-glycosylation pathway. Biology Direct. 2016;11: 36. doi: 10.1186/s13062-016-0137-2 LombardJ The multiple evolutionary origins of the eukaryotic N-glycosylation pathway Biology Direct 2016 11 36 10.1186/s13062-016-0137-2 Open DOISearch in Google Scholar

Meyer BH, Albers SV, Eichler J, Aebi M. Archaea. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. (eds.) Essentials of glycobiology. 4th ed. Cold Spring Harbor (NY): Cold Spring Harbor Press; 2022. p.297–306. MeyerBH AlbersSV EichlerJ AebiM Archaea In: VarkiA CummingsRD EskoJD StanleyP HartGW AebiM (eds.) Essentials of glycobiology 4th ed. Cold Spring Harbor (NY) Cold Spring Harbor Press 2022 297 306 Search in Google Scholar

Eichler J. N-glycosylation in Archaea-New roles for an ancient posttranslational modification. Molecular Microbiology. 2020;114(5): 735–741. doi: 10.1111/mmi.14569 EichlerJ N-glycosylation in Archaea-New roles for an ancient posttranslational modification Molecular Microbiology 2020 114 5 735 741 10.1111/mmi.14569 Open DOISearch in Google Scholar

Bai L, Wang T, Zhao G, Kovach A, Li H. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature. 2018;555(7696): 328–333. doi: 10.1038/nature25755 BaiL WangT ZhaoG KovachA LiH The atomic structure of a eukaryotic oligosaccharyltransferase complex Nature 2018 555 7696 328 333 10.1038/nature25755 Open DOISearch in Google Scholar

Wang P, Wang H, Gai J, Tian X, Zhang X, Lv Y, et al. Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi. Scientific Reports. 2017;7: 40301. doi: 10.1038/srep40301 WangP WangH GaiJ TianX ZhangX LvY Evolution of protein N-glycosylation process in Golgi apparatus which shapes diversity of protein N-glycan structures in plants, animals and fungi Scientific Reports 2017 7 40301 10.1038/srep40301 Open DOISearch in Google Scholar

Neme R, Tautz D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics. 2013;14: 117. doi: 10.1186/1471-2164-14-117 NemeR TautzD Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution BMC Genomics 2013 14 117 10.1186/1471-2164-14-117 Open DOISearch in Google Scholar

Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Letters. 2022;596(18): 2345–2363. doi: 10.1002/1873-3468.14457 SantosTCB DingjanT FutermanAH The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway FEBS Letters 2022 596 18 2345 2363 10.1002/1873-3468.14457 Open DOISearch in Google Scholar

Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science (New York, NY). 2006;311(5762): 796–800. doi: 10.1126/science.1113832 DavidsonEH ErwinDH Gene regulatory networks and the evolution of animal body plans Science (New York, NY) 2006 311 5762 796 800 10.1126/science.1113832 Open DOISearch in Google Scholar

Davidson EH, Erwin DH. Evolutionary innovation and stability in animal gene networks. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution. 2010;314(3): 182–186. doi: 10.1002/jez.b.21329 DavidsonEH ErwinDH Evolutionary innovation and stability in animal gene networks Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution 2010 314 3 182 186 10.1002/jez.b.21329 Open DOISearch in Google Scholar

Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell. 2011;144(6): 970–985. doi: 10.1016/j.cell.2011.02.017 PeterIS DavidsonEH Evolution of gene regulatory networks controlling body plan development Cell 2011 144 6 970 985 10.1016/j.cell.2011.02.017 Open DOISearch in Google Scholar

Erwin DH, Davidson EH. The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics. 2009;10(2): 141–148. doi: 10.1038/nrg2499 ErwinDH DavidsonEH The evolution of hierarchical gene regulatory networks Nature Reviews Genetics 2009 10 2 141 148 10.1038/nrg2499 Open DOISearch in Google Scholar

Frankel N, Wang S, Stern DL. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(51): 20975–20979. doi: 10.1073/pnas.1207715109 FrankelN WangS SternDL Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution Proceedings of the National Academy of Sciences of the United States of America 2012 109 51 20975 20979 10.1073/pnas.1207715109 Open DOISearch in Google Scholar

Hynes RO. The evolution of metazoan extracellular matrix. The Journal of Cell Biology. 2012;196(6): 671–679. doi: 10.1083/jcb.201109041 HynesRO The evolution of metazoan extracellular matrix The Journal of Cell Biology 2012 196 6 671 679 10.1083/jcb.201109041 Open DOISearch in Google Scholar

Meyer SM. Darwin’s Doubt: the explosive origin of animal life and the case for intelligent design. New York, NY: Harper Collins; 2013. p.498. MeyerSM Darwin’s Doubt: the explosive origin of animal life and the case for intelligent design New York, NY Harper Collins 2013 498 Search in Google Scholar

Noble D. Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology? The Journal of Physiology. 2011;589(Pt 5): 1007–1015. doi: 10.1113/jphysiol.2010.201384 NobleD Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology? The Journal of Physiology 2011 589 Pt 5 1007 1015 10.1113/jphysiol.2010.201384 Open DOISearch in Google Scholar

Noble D, Noble R. Origins and demise of selfish gene theory. Theoretical Biology Forum. 2022;115(1–2): 29–43. doi: 10.19272/202211402003 NobleD NobleR Origins and demise of selfish gene theory Theoretical Biology Forum 2022 115 1–2 29 43 10.19272/202211402003 Open DOISearch in Google Scholar

Wells J. Membrane patterns carry ontogenetic information that is specified indpendently of DNA. BIO-Complexity. 2014;2014(2): 1–28. doi: 10.5048/BIO-C.2014.2 WellsJ Membrane patterns carry ontogenetic information that is specified indpendently of DNA BIO-Complexity 2014 2014 2 1 28 10.5048/BIO-C.2014.2 Open DOISearch in Google Scholar

Vane-Wright RI, Corning PA. Teleonomy in living systems: an overview. Biological Journal of the Linnean Society. 2023;139: 341–356. doi: 10.1093/biolinnean/blad037 Vane-WrightRI CorningPA Teleonomy in living systems: an overview Biological Journal of the Linnean Society 2023 139 341 356 10.1093/biolinnean/blad037 Open DOISearch in Google Scholar

Babcock G, McShea DW. Resolving teleology’s false dilemma. Biological Journal of the Linnean Society. 2023;139(4): 415–432. doi: 10.1093/biolinnean/blac058 BabcockG McSheaDW Resolving teleology’s false dilemma Biological Journal of the Linnean Society 2023 139 4 415 432 10.1093/biolinnean/blac058 Open DOISearch in Google Scholar

Gontier N. Teleonomy as a problem of self-causation. Biological Journal of the Linnean Society. 2023;139(4): 388–414. doi: 10.1093/biolinnean/blac111 GontierN Teleonomy as a problem of self-causation Biological Journal of the Linnean Society 2023 139 4 388 414 10.1093/biolinnean/blac111 Open DOISearch in Google Scholar

Heylighen F. The meaning and origin of goal-directedness: a dynamical systems perspective. Biological Journal of the Linnean Society. 2023;139: 370–389. doi: 10.1093/biolinnean/blac060 HeylighenF The meaning and origin of goal-directedness: a dynamical systems perspective Biological Journal of the Linnean Society 2023 139 370 389 10.1093/biolinnean/blac060 Open DOISearch in Google Scholar