Open Access

Effect of multi-digit tactile imagery training on reaction time


Cite

Amprasi E., Vernadakis N., Zetou E., Antoniou, P. (2021) Effect of a Full Immersive Virtual Reality Intervention on Whole Body Reaction Time in Children. Int. J. Latest Res. Hum. Soc. Sci., 4(8): 15-20. Search in Google Scholar

Anema H.A., de Haan A.M., Gebuis T., Dijkerman H.C. (2012) Thinking about touch facilitates tactile but not auditory processing. Exp. Brain Res., 218: 373-380. DOI: 10.1007/s00221-012-3020-0. Search in Google Scholar

Antão J.Y.F.D.L., Abreu L.C.D., Barbosa R.T.D.A., Crocetta T.B., Guarnieri R., Massetti T., Antunes T.P.C., Tonks J., Monteiro C.B.D.M., (2020) Use of augmented reality with a motion-controlled game utilizing alphabet letters and numbers to improve performance and reaction time skills for people with autism spectrum disorder. Cyberpsychol. Behav. Soc. Netw., 23(1): 16-22. DOI: 10.1089/cyber.2019.0103. Search in Google Scholar

Asseman F., Bronstein A.M., Gresty M.A. (2007) Using vibrotactile feedback of instability to trigger a forward compensatory stepping response. J. Neurol., 254: 1555-1561. DOI: 10.1007/s00415-007-0587-7. Search in Google Scholar

Balakrishnan G., Uppinakudru G., Girwar Singh G., Bangera S., Dutt Raghavendra A., Thangavel D. (2014) A comparative study on visual choice reaction time for different colors in females. Neurol. Res. Int. DOI: 10.1155/2014/301473. Search in Google Scholar

Batra A., Vyas S., Gupta J., Gupta K., Hada R. (2014) A comparative study between young and elderly Indian males on audio-visual reaction time. Indian J. Sci. Res. Technol., 2(1): 25-29. Search in Google Scholar

Benzy V.K., Vinod A.P., Subasree R., Alladi S., Raghavendra K. (2020) Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng., 28(12): 3051-3062. DOI: 10.1109/TNSRE.2020.3039331. Search in Google Scholar

Clark J.F., Ellis J.K., Bench J., Khoury J., Graman P. (2012) High-performance vision training improves batting statistics for University of Cincinnati baseball players. PLoS One, 7(1): e29109. DOI: 10.1371/journal. pone.0029109. Search in Google Scholar

Craver-Lemley C., Arterberry M.E. (2001) Imagery-induced interference on a visual detection task. Spatial vision, 14(2): 101-120. DOI: 10.1163/156856801300202887. Search in Google Scholar

Das S., Gandhi A., Mondal S. (1997) Effect of premenstrual stress on audiovisual reaction time and audiogram. Indian J. Physiol. Pharmacol., 41(1): 67-70. Search in Google Scholar

Farah M.J. (1985) Psychophysical evidence for a shared representational medium for mental images and percepts. J. Exp. Psychol. Gen., 114(1): 91. DOI: 10.1037/0096-3445.114.1.91. Search in Google Scholar

Guillot A., Collet C. (2005) Contribution from neuro-physiological and psychological methods to the study of motor imagery. Brain Res. Rev., 50(2): 387-397. DOI: 10.1016/j.brainresrev.2005.09.004. Search in Google Scholar

Häger-Ross C., Schieber M.H. (2000) Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. J. Neurosci., 20(22): 8542-8550. DOI: 10.1523/JNEUROSCI.20-22-08542.2000. Search in Google Scholar

Harrar V., Harris L.R. (2005) Simultaneity constancy: detecting events with touch and vision. Exp. Brain Res., 166: 465-473. DOI: 10.1007/s00221-005-2386-7. Search in Google Scholar

Ho C., Gray R., Spence C. (2013) Reorienting driver attention with dynamic tactile cues. IEEE Trans. Haptics, 7(1): 86-94. DOI: 10.1109/TOH.2013.62. Search in Google Scholar

Isaac A., Marks D.F., Russell D.G. (1986) An instrument for assessing imagery of movement: The Vividness of Movement Imagery Questionnaire (VMIQ). J. Ment. Imagery. Search in Google Scholar

Jain A., Bansal R., Kumar A., Singh K.D. (2015) A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int. J. Appl. Basic Med. Res., 5(2): 124-127. DOI: 10.4103/2229-516X.157168. Search in Google Scholar

Jehu D., Paquet N., Lajoie Y. (2017) Balance and mobility training with or without concurrent cognitive training does not improve posture, but improves reaction time in healthy older adults. Gait Posture, 52: 227-232. DOI: 10.1016/j.gaitpost.2016.12.006. Search in Google Scholar

Kosinski R.J. (2008) A literature review on reaction time. Clemson Univ., 10(1): 337-344. Search in Google Scholar

Kosslyn S.M., Ganis G., Thompson W.L. (2001) Neural foundations of imagery. Nat. Rev. Neurosci., 2(9): 635-642. DOI: 10.1038/35090055. Search in Google Scholar

Lakshminarayanan K., Ramu V., Rajendran J., Chandrasekaran K.P., Shah R., Daulat S.R., Moodley V., Madathil D., (2023) The effect of tactile imagery training on reaction time in healthy participants. Brain Sci., 13(2): 321. DOI: 10.3390/brainsci13020321. 2023. Search in Google Scholar

Lakshminarayanan K., Shah R., Daulat S.R., Mood-ley V., Yao Y., Sengupta P., Ramu V., Madathil D., (2023) Evaluation of EEG oscillatory patterns and classification of compound limb tactile imagery. Brain Sci., 13(4): 656. DOI: 10.3390/brainsci13040656. Search in Google Scholar

Lang C.E., Schieber M.H. (2004) Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J. Neurophysiol., 92(5): 2802-2810. DOI: 10.1152/jn.00480.2004. Search in Google Scholar

Lawrence D.G., Kuypers H.G. (1968) The functional organization of the motor system in the monkey: I. The effects of bilateral pyramidal lesions. Brain, 91(1): 1-14. DOI: 10.1093/brain/91.1.1. Search in Google Scholar

Li Z.M., Latash M.L., Zatsiorsky V.M. (1998) Force sharing among fingers as a model of the redundancy problem. Exp. Brain Res., 119: 276-286. DOI: 10.1007/s002210050343. Search in Google Scholar

Lotte F., Bougrain L., Cichocki A., Clerc M., Congedo M., Rakotomamonjy A., Yger F. (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng., 15(3): 031005. DOI: 10.1088/1741-2552/aab2f2. Search in Google Scholar

Machado T.C., Carregosa A.A., Santos M.S., Ribeiro N.M.D.S., Melo A. (2019) Efficacy of motor imagery additional to motor-based therapy in the recovery of motor function of the upper limb in post-stroke individuals: a systematic review. Top. Stroke Rehabil., 26(7): 548-553. DOI: 10.1080/10749357.2019.1627716. Search in Google Scholar

Marks D.F. (1973) Visual imagery differences in the recall of pictures. Br. J. Psychol., 64(1): 17-24. DOI: 0.1111/j.2044-8295.1973.tb01322.x. Search in Google Scholar

Mawarti S., Rohmansyah N.A., Hiruntrakul A. (2021) Effect of volleyball training program to improve reaction time. Int. J. Hum. Mov. Sports Sci., 9: 1314-1318. DOI: 10.13189/saj.2021.090627. Search in Google Scholar

Meng F., Ho C., Gray R., Spence C. (2015) Dynamic vibrotactile warning signals for frontal collision avoidance: towards the torso versus towards the head. Ergonomics, 58(3): 411-425. DOI: 10.1080/00140139.2014.976278. Search in Google Scholar

Mizuguchi N., Nakata H., Uchida Y., Kanosue K. (2012) Motor imagery and sport performance. J. Phys. Fitness Sports Med., 1(1): 103-111. DOI: 10.7600/jpfsm.1.103. Search in Google Scholar

Mohan M., Thombre D.P., Das A.K., Subramanian N., Chandrasekar S. (1984). Reaction time in clinical diabetes mellitus. Indian J. Physiol. Pharmacol., 28(4): 311-314. Search in Google Scholar

Neal R.J., Wilson B.D. (1985) 3D kinematics and kinetics of the golf swing. J. Appl. Biomech., 1(3): 221-232. DOI: 10.1123/ijsb.1.3.221. Search in Google Scholar

Ng A.W., Chan A.H. (2012) Finger response times to visual, auditory and tactile modality stimuli. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 2, pp. 1449-1454). IMECS. Search in Google Scholar

Nigmatullina Y., Arshad Q., Wu K., Seemungal B.M., Bronstein A.M., Soto D. (2015) How imagery changes self-motion perception. Neuroscience, 291: 46-52. DOI: 10.1016/j.neuroscience.2015.01.021. Search in Google Scholar

Oftadehal M., Movahedi Y., Sepahvand R. (2017) The effectiveness of neurofeedback training on improving reaction time performance in football athletes. Community Health J., 11(2): 1-9. DOI: 10.22123/CHJ.2018.85310. Search in Google Scholar

Okubo Y., Schoene D., Lord S.R. (2017) Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br. J. Sports Med., 51(7): 586-593. DOI: 10.1136/bjsports-2015-095452. Search in Google Scholar

Palermi S., Sacco A.M., Belviso I., Marino N., Gambardella F., Loiacono C., Sirico F. (2020) Effectiveness of Tai Chi on balance improvement in type 2 diabetes patients: a systematic review and meta-analysis. J. Aging Phys. Act., 28(5): 787-797. DOI: 10.1123/japa.2019-0242. Search in Google Scholar

Papic C., Sinclair P., Fornusek C., Sanders R. (2018) The effect of auditory stimulus training on swimming start reaction time. Sports Biomech. DOI: 10.1080/14763141.2017.1409260. Search in Google Scholar

Pearson J. (2019) The human imagination: the cognitive neuroscience of visual mental imagery. Nat. Rev. Neurosci., 20(10): 624-634. DOI: 10.1038/s41583-019-0202-9. Search in Google Scholar

Pearson J., Clifford C. W., Tong F. (2008) The functional impact of mental imagery on conscious perception. Curr. Biol., 18(13): 982-986. DOI: 10.1016/j.cub.2008.05.048. Search in Google Scholar

Peon A.R., Prattichizzo D. (2013) Reaction times to constraint violation in haptics: comparing vibration, visual and audio stimuli. In 2013 world haptics conference (WHC) (pp. 657-661). IEEE. DOI: 10.1109/WHC.2013.6548486. Search in Google Scholar

Pfurtscheller G., Woertz M., Müller G., Wriessnegger S., Pfurtscheller K. (2002) Contrasting behavior of beta event-related synchronization and somatosensory evoked potential after median nerve stimulation during finger manipulation in man. Neurosci. Lett., 323(2): 113-116. DOI: 10.1016/S0304-3940(02)00119-2. Search in Google Scholar

Porter R., Lemon R. (1995) Corticospinal function and voluntary movement. Oxford University Press. DOI: 10.1093/acprof:oso/9780198523758.001.0001. Search in Google Scholar

Pourazar M., Mirakhori F., Hemayattalab R., Bagherzadeh F. (2018) Use of virtual reality intervention to improve reaction time in children with cerebral palsy: A randomized controlled trial. Dev. Neurorehabil., 21(8): 515-520. DOI: 10.1080/17518423.2017.1368730. Search in Google Scholar

Ramu V., Lakshminarayanan K. (2023) Enhanced motor imagery of digits within the same hand via vibro-tactile stimulation. Front. Neurosci., 17: 1152563. DOI: 10.3389/fnins.2023.1152563. Search in Google Scholar

Reilly K.T., Hammond G.R. (2000) Independence of force production by digits of the human hand. Neurosci. Lett., 290(1): 53-56. DOI: 10.1016/S0304-3940(00)01328-8 Search in Google Scholar

Ruffino C., Papaxanthis C., Lebon F. (2017) Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neurosci., 341: 61-78. DOI: 10.1016/j.neuroscience.2016.11.023. Search in Google Scholar

Shull P.B., Zhu X., Cutkosky M.R. (2017) Continuous movement tracking performance for predictable and unpredictable tasks with vibrotactile feedback. IEEE Trans. Haptics, 10(4): 466-475. DOI: 10.1109/TOH.2017.2689023. Search in Google Scholar

Stinear C.M., Byblow W.D., Steyvers M., Levin O., Swinnen S.P. (2006) Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp. Brain Res., 168: 157-164. DOI: 10.1007/s00221-005-0078-y. Search in Google Scholar

Taimela S. (1991) Factors affecting reaction-time testing and the interpretation of results. Percept. Mot. Skills, 73(3 suppl): 1195-1202. DOI: 10.2466/pms.1991.73.3f.1195. Search in Google Scholar

Van Erp J.B., Van Veen H.A. (2004) Vibrotactile in-vehicle navigation system. Transp. Res. Part F Traffic Psychol. Behav., 7(4-5): 247-256. DOI: 10.1016/j. trf.2004.09.003. Search in Google Scholar

Yao L., Jiang N., Mrachacz-Kersting N., Zhu X., Farina D., Wang Y. (2022) Performance variation of a somatosensory BCI based on imagined sensation: a large population study. IEEE Trans. Neural Syst. Rehabil. Eng., 30: 2486-2493. DOI: 10.1109/TNSRE.2022.3198970. Search in Google Scholar

Yao L., Mrachacz-Kersting N., Sheng X., Zhu X., Farina D., Jiang N. (2018) A multi-class BCI based on somato-sensory imagery. IEEE Trans. Neural Syst. Rehabil. Eng., 26(8): 1508-1515. DOI: 10.1109/TNSRE.2018.2848883. Search in Google Scholar

Yao L., Sheng X., Mrachacz-Kersting N., Zhu X., Farina D., Jiang N. (2017) Decoding covert somatosensory attention by a BCI system calibrated with tactile sensation. IEEE Trans. Biomed. Eng., 65(8): 1689-1695. DOI: 10.1109/TBME.2017.2762461. Search in Google Scholar

Yildirim N.Ü., Erbahçeci F., Ergun N., Pitetti K.H., Beets M.W. (2010) The effect of physical fitness training on reaction time in youth with intellectual disabilities. Percept. Mot. Skills, 111(1): 178-186. DOI: 10.2466/06.10.11.13.15.25.PMS.111.4.178-186. Search in Google Scholar

Yoo S.S., Freeman D.K., McCarthy III J.J., Jolesz F.A. (2003) Neural substrates of tactile imagery: a functional MRI study. Neuroreport, 14(4): 581-585. DOI: 10.1097/01.wnr.0000055819.53834.16. Search in Google Scholar

eISSN:
2080-2234
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education