Open Access

Numerical Study of Thermal Dissipation Processes in Silicon

B&H Electrical Engineering's Cover Image
B&H Electrical Engineering
Special Issue: Computational, Numerical and Mathematical Methods in Electrical Engineering

Cite

Heat dissipation in nanoelectronics has become a major bottleneck to further scaling in next-generation integrated circuits. In order to address this problem and develop more energy-efficient nanoelectronic transistor, sensor, and storage devices, we must understand thermal processes at the atomic scale, which requires numerical simulation of the interaction between electrons and heat, carried by quantized lattice vibrations called phonons. Here we examine in detail the phonon emission and absorption spectra in silicon at several elevated values for the electron temperature. The effect of electric field on the electron distribution and equivalent electron temperature is obtained from full-band Monte Carlo simulation for bulk silicon. The electron distributions are used to numerically compute the phonon emission and absorption spectra and discover trends in their behavior at high electron temperatures. The concept of electron temperature is used to understand the relationship between field and heat emission, and it is found that longitudinal acoustic (LA) phonon emission increases at high electron temperatures. It is also found that emission of slower zone-edge phonons increases for all phonon branches at high electron temperatures. These conclusions at high electric fields can be used to enable heat-conscious design of future silicon devices.

eISSN:
2566-3151
Language:
English