Cite

Khan, I., Saeed, K., & Khan, I. Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry (2017) doi:10.1016/j.arabjc.2017.05.011Open DOISearch in Google Scholar

Rehman, S., Mumtaz, A., & Hasanain, S. K., Size effects on the magnetic and optical properties of CuO nanoparticles, Journal of Nanoparticle Research, 13(6), (2010) 2497–2507, doi:10.1007/ s11051-010-0143-8Search in Google Scholar

Neeleshwar, S., Chen, C. L., Tsai, C. B., Chen, Y.Y, Chen, C.C., Shyu, S. G., Seehra, M.S., Size-dependent properties of CdSe quantum dots. Physical Review B, 71(20), (2005) 201307R doi:10.1103/physrevb.71.201307Open DOISearch in Google Scholar

Anandan, S., Lee, G. J., & Wu, J. J. Sonochemical synthesis of CuO nanostructures with different morphology. Ultrasonics Sonochemistry, 19(3), 682–686(2012) doi:10.1016/j.ultsonch.2011.08.0Open DOISearch in Google Scholar

Yu. P. Sukhorukov*, B. A. Gizhevskii, E. V. Mostovshchikova, A. Ye. Yermakov, S. N. Tugushev, and E. A. Kozlov, Nano-crystalline copper oxide for selective solar energy absorbers, Tech. Phys. Lett. 32, 132 (2006)Search in Google Scholar

Zhang, H., & Zhang, M., Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors, Materials Chemistry and Physics, 108(2-3), (2008) 184–187. doi:10.1016/ j.matchemphys.2007.10Search in Google Scholar

Devi, H.S., Singh, T.D., Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange. Adv. Electr. Comput. Eng.4(1) (2014) 83–8.Search in Google Scholar

Zhu, J., Li, D., Chen, H., X Yang, L Lu, X Wang, Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Materials Letters, 58(26), (2004) 3324–3327. doi:10.1016/j.matlet.2004.06.031Open DOISearch in Google Scholar

Mallick, P., Sahu, S., Structure, Microstructure and Optical Absorption Analysis of CuO Nanoparticles Synthesized by Sol-Gel Route. J. Nanosci. Nanotechnol. 2(3), (2012) 71-74. DOI: 10.5923/j.nn.20120203.05Search in Google Scholar

Touka, N., Tabli, D., Badari, K., Effect of annealing temperature on structural and optical properties of copper oxide thin films deposited by sol-gel spin coating method, Journal Of Optoelectronics And Advanced Materials, 21 (11-12) (2019) 698 – 701Search in Google Scholar

Raship, N. A., Sahdan, M. Z., Adriyanto, F., Nurfazliana, M. F., Bakri, A. S, Effect of annealing temperature on the properties of copper oxide films prepared by dip coating technique (2017). doi:10.1063/1.4968374Open DOISearch in Google Scholar

Serin, N., Serin, T., Horzum, Ş., & Çelik, Y, Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semiconductor Science and Technology, 20(5), (2005) 398–401. doi:10.1088/0268-1242/20/5/012Open DOISearch in Google Scholar

Masudy-Panah, S., Moakhar, R. S., Chua, C. S., Kushwaha, A., Wong, T. I. and Dalapati, G. K., Rapid thermal annealing assisted stability and efficiency enhancement in a sputter deposited CuO photocathode. RSC Advances, 6(35), 29383–29390 (2016) doi:10.1039/c6ra03383kOpen DOISearch in Google Scholar

Gottesman, R., Song, A., Levine, I., Krause, M., Islam, A. N., Abou-Ras, D., Dittrich, T., Van de Krol, R. and Chemseddine, A., Pure CuBi2 O4 Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi2 O3 /CuO Grown by Pulsed Laser Deposition. Advanced Functional Materials, 1910832 (2020)Search in Google Scholar

Bergum, K., Riise, H. N., Gorantla, S., Krause, M., Islam, A. N., Abou-Ras, D., Dittrich, T., Van de Krol, R. and Chemseddine, A, Improving carrier transport in Cu2O thin films by rapid thermal annealing. Journal of Physics: Condensed Matter, 30(7) (2018), 075702. doi:10.1088/1361-648x/aaa5f4Open DOISearch in Google Scholar

Vasiliev, R. B., Rumyantseva, M. N., Gaskov. A. M. (1998). CuO/SnO2 thin film etero structures as chemical sensors to H2S. Sensor Actuat B. 50, 186-193.Search in Google Scholar

Ishihara, T., Higuchi, M., Takagi, T., Ito, M., Nishiguchi, H., Takita, Y., Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO2 sensor, Journal of Materials Chemistry, 8(9) (1998) 2037–2042. doi:10.1039/a801595cOpen DOISearch in Google Scholar

Mammah, S. L., Opara, F. E., Omubo-Pepple, V. B., Joseph Effiom-Edem Ntibi, Sabastine Chukwuemeka Ezugwu, Fabian Ifeanyichukwu Ezema, Annealing effect on the optical and solid state properties of cupric oxide thin films deposited using the Aqueous Chemical Growth (ACG) method. Natural Science, 05 (03) (2013) 389–399 doi:10.4236/ns. 2013.53052Open DOISearch in Google Scholar

Hashim, H., Samat, S. F. A., Shariffudin, S. S., & Saad, P. S. M. (2018). Investigation of Annealing Temperature on Copper Oxide Thin Films Using Sol-Gel Spin Coating Technique. IOP Conference Series: Materials Science and Engineering, 340, 012008. doi:10.1088/1757-899x/340/1/012008Open DOISearch in Google Scholar

Wojcieszak, D., Obstarczyk, A., Mankowska, E., Mazur, M., Kaczmarek, D., Zakrzewska, K., Mazur, P., Domaradzki, J. Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Materials Research Bulletin, 147 (2022) 111646 doi.10.1016/j.materresbull.2021.111646Search in Google Scholar

Al Armouzi, N., El Hallani, G., Liba, A., Zekraoui, M., Hilal, H.S., Kouider, N., Mabrouki, M., Effect of annealing temperature on physical characteristics of CuO films deposited by sol-gel spin coating. Materials Research Express. (2019) 10.1088/2053-1591/ab44f3Search in Google Scholar

Akgul, U., Yildiz, K., & Atici, Y. (2016). Effect of annealing temperature on morphological, structural and optical properties of nanostructured CuO thin film, The European Physical Journal Plus, 131(4). doi:10.1140/epjp/i2016-16089-3Open DOISearch in Google Scholar

Martínez-Saucedo, G., Torres-Delgado, G., Márquez-Marín, J., Zelaya-Ángel, O., Castanedo-Pérez, R., Copper oxide and tin oxide amorphous-thin-film heterojunction diodes obtained via solution-based techniques with increased rectification after rapid thermal annealing treatments. Journal of Alloys and Compounds, (2020) 157790. doi:10.1016/j.jallcom.2020.157790Open DOISearch in Google Scholar

Xiong, L., Xiao, H., Chen, S., Chen, Z., Yi, X., Wen, S., Zheng, G., Ding, Y., Yu, H., Fast and simplified synthesis of cuprous oxide nanoparticles: annealing studies and photocatalytic activity. RSC Adv., 4(107) (2014) 62115–62122. doi:10.1039/c4ra12406eOpen DOISearch in Google Scholar

Liu, D., Zhou, W., Wu, J., CuO-CeO2/ZSM-5 composites for reactive adsorption of hydrogen sulphide at high temperature. Can. J. Chem. Eng. 94, (2016) 2276–2281. http://dx.doi.org/10.1002/cjce.22613.Search in Google Scholar

Maini, A., & Shah, M. A., Investigation on physical properties of nanosized copper oxide (CuO) doped with cobalt (Co): A material for electronic device application. International Journal of Ceramic Engineering & Science. (2021) doi:10.1002/ces2.10097Open DOISearch in Google Scholar

Gawande, M. B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R. S., Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis, Chemical Reviews, 116(6)(2016)3722–3811 doi:10.1021/ acs.chemrev.5b00482Search in Google Scholar

Ovchinnikov, S. G., Gizhevskiĭ, B. A., Sukhorukov, Y. P., Ermakov, A. E., Uĭmin, M. A., Kozlov, E. A., Kotov, Ya. A. & Bagazeev, A. V, Specific features of the electronic structure and optical spectra of nanoparticles with strong electron correlations. Physics of the Solid State, 49(6) (2007) 1116–1120. doi:10.1134/s1063783407060169Open DOISearch in Google Scholar

Eranna, G., Joshi, B. C., Runthala, D. P., & Gupta, R. P., Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review. Critical Reviews in Solid State and Materials Sciences, 29(3-4)(2004) 111–188. doi:10.1080/10408430490888977Open DOISearch in Google Scholar

Gao, P., Chen, Y., Lv, H., Li, X., Wang, Y., Zhang, Q., Synthesis of CuO nanoribbon arrays with noticeable electrochemical hydrogen storage ability by a simple precursor dehydration route at lower temperature. International Journal of Hydrogen Energy, 34(7 (2009) 3065–3069. doi:10.1016 /j.ijhydene.2008.12.05Search in Google Scholar

Arbuzova, T. I., Gizhevskii, B. A., Naumov, S. V., Korolev, A.V., Arbuzov, V.L., Shal’nov, K.V., Druzhkov, A.P., Temporal changes in magnetic properties of high-density CuO nanoceramics. Journal of Magnetism and Magnetic Materials, 258(2003)-259 342–344. doi:10.1016/s0304-8853(02)01052-1Open DOISearch in Google Scholar

Gao, X. P., Bao, J. L., Pan, G. L., Zhu, H. Y., Huang, P. X., Wu, F., Song, D. Y. Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery. The Journal of Physical Chemistry B, 108(18) (2004) 5547–5551. doi:10.1021/jp037075kOpen DOISearch in Google Scholar

Udani, P. P. C., Gunawardana, P.V.D.S., Lee, H. C., Kim, D. H., Steam reforming and oxidative steam reforming of methanol over CuOCeO2 catalysts, Int. J. Hydrogen Energy 34 (2009)7648Search in Google Scholar

Toolabi, A., Zare, M., Rahmani, A., Hoseinzadehd, E., Sarkhoshe, M., and Zare., M. Investigating Toxicity and Antibacterial Aspects of Nano ZnO, TiO2 and CuO with Four Bacterial Species. J. Basic. Appl. Sci. Res. 3.2 (2013) 221-226.Search in Google Scholar

Jadhav, S., Gaikwad, S., Nimse, M., & Rajbhoj, A., Copper Oxide Nanoparticles: Synthesis, Characterization and Their Antibacterial Activity. Journal of Cluster Science, 22(2) (2011) 121–129. doi:10.1007/s10876-011-0349-7Open DOISearch in Google Scholar

Rahim, A., Rehman, Z. U., Mir, S., Muhammad, N., Rehman, F., Nawaz, M. H., Yaqub, M., Siddiqi, S. A., Chaudhry, A. A, A non-enzymatic glucose sensor based on CuO-nanostructure modified carbon ceramic electrode. Journal of Molecular Liquids, 248 (2017) 425–431. doi:10.1016/j.molliq.2017.10.087Open DOISearch in Google Scholar

Rehana, D., Mahendiran, D., Kumar, R. S., & Rahiman, A. K., Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomedicine & Pharmacotherapy, 89 (2017) 1067–1077. doi:10.1016/j.biopha.2017.02.101Open DOISearch in Google Scholar

Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., & Oyebamiji, A. K., Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 6(7) (2020), e04508. doi:10.1016/j.heliyon.2020.e04508Open DOISearch in Google Scholar

Unutulmazsoy, Y., Cancellieri, C., Lin, L., Jeurgens, L. P. H., Jeurgens, Reduction of thermally grown single-phase CuO and Cu2O thin films by in-situ time-resolved XRD, Applied Surface Science 588 (2022)152896Search in Google Scholar

Thi, T. H., Cong1, B. T., Hai, P. N., Hoang, N., Chinh, H. V., Huong, B. T., N. T. Linh, N. T., Son, B. T., Hoa, T. T. Q., Viet, T. N., Preparation of CuO Nanorods by Thermal Oxidation in Ozone Ambient, VNU Journal of Science: Mathematics – Physics, Vol. 38, No. 2 (2022) 9-15Search in Google Scholar

Siddiqui, V. U., Ansari, A., Khan, I., Akram, M.K., Siddiqi, W.A. Sol-gel synthesis of copper (II) oxide/alginate (CuO/Alg) bio-nanocomposite and effects of rapid thermal annealing on its properties and structure. Materials Research Express, 6(11) (2019) 115095. doi:10.1088/2053-1591/ab4aceOpen DOISearch in Google Scholar

Khan, S. N., Ge, S., Gu, E., Karunakaran, S.K., Yang, W., Hong, R., Mai, Y., Lin, X., Yang, G., Bifacial Cu 2 ZnSn(S,Se) 4 Thin Film Solar Cell Based on Molecular Ink and Rapid Thermal Processing. Advanced Materials Interfaces, 8(18) (2021) 2100971. doi: 10.1002/admi.202100971Open DOISearch in Google Scholar

Mainz, R., Walker, B. C., Schmidt, S.S., Zander, O., Weber, A., Rodriguez-Alvarez, H., Just, J., Klaus, M., Agrawal, R., Unold, T. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors., Phys. Chem. Chem. Phys., 15(2013) 18281Search in Google Scholar

Baqer, A. A., Matori, K. A., Al-Hada, N.M., Shaari, A.H., Kamari, H.M., Saion, E., Chyi, J.L.Y., Azurahanim Abdullah, C, Synthesis and characterization of binary (CuO)0.6 (CeO2)0.4 nanoparticles via a simple heat treatment method. Results in Physics, 9 (2018) 471–478. doi:10. 1016 /j.rinp.2018.02.079Search in Google Scholar

Rollett, A., Humphreys, F. J., Rohrer, G. S., & Hatherly, H. Recrystallization-and Related Annealing Phenomena, Elsevier, 2(2004)658Search in Google Scholar

Lee, Y.C., Hu, S.Y., Water, W., Tiong, K.K., Feng, Z.C., Chen, Y.T., Huang, J.C., Lee, J.W., Huang, C.C., Shen, J. L., Cheng, M.H, Rapid thermal annealing effects on the structural and optical properties of ZnO films deposited on Si substrates. Journal of Luminescence, 129(2) (2009) 148–152. doi:10.1016/j.jlumin.2008.09.003Open DOISearch in Google Scholar

Puchert, M. K., Timbrell, P. Y., & Lamb, R. N. (1996). Postdeposition annealing of radio frequency magnetron sputtered ZnO films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14(4), 2220–2230. doi:10.1116/1.580050Open DOISearch in Google Scholar

Cotterill, P. and Mould, P. R. (1976). Recrystallization and Grain Growt in Metals. Surrey Univ. Press, London. Novikov, V.Search in Google Scholar

Rios, P.R., Siciliano Jr, F., Sandim, H.R.Z., Plaut, R.L., Padilha, A.F., Nucleation and Growth During Recrystallization, Materials Research, Vol. 8, (3) (2005) 225-238.Search in Google Scholar

Zahou, L., Wang, S., Ma, H., Ma, S., Xu, D., Guo, Y., Size-controlled synthesis of copper nanoparticles in supercritical water. Chemical Engineering Research and Design, 98. (2015) https://doi.org/10.1016/j.cherd.2015.04.004Search in Google Scholar

Voyiadjis, G. Z., Faghihi, D., & Zhang, Y., A theory for grain boundaries with straingradient plasticity. International Journal of Solids and Structures, 51(10) (2014)1872–1889. doi:10.1016/ j.ijsolstr .2014.01.02Search in Google Scholar

Ghobadi, N. Band gap determination using absorption spectrum fitting procedure. International Nano Letters, 3(1) (2013) doi:10.1186/2228-5326-3-2Open DOISearch in Google Scholar

Aguirre, J. M., Gutiérrez, A., & Giraldo, O. Simple route for the synthesis of copper hydroxy salts. Journal of the Brazilian Chemical Society, 22(3) (2011) 546–551. doi:10.1590/s0103-50532011000 300019Open DOISearch in Google Scholar

Henrist, C., Traina, K., Hubert, C., Toussaint, G., Rulmont, A., Cloots, R., Study of the morphology of copper hydr oxylnitrate nanoplatelets obtained by controlled double jet precipitation and ureahydrolysis. J. Cryst. Growth. 254 (2003)176-187 https://doi.org/10.1016/S0022-0248(03)01145-XSearch in Google Scholar

Liu, J., Huang, X., Li, Y., Sulieman, K., He, X., Sun, F., Hierarchical nano structures of cupric oxide on a copper substrate: controllable morphology and wettability. J. Mater. Chem.16 (45) (2006) 4427-4434 https://doi.10.1039/C6DT04500FSearch in Google Scholar

Akgul F A, Akgul G, Yildirim, N., Unalan, H. E., Turan, R., Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films Mater. Chem. Phys. 147 (2014) 987–995 https://doi.org/10.1016/j.matchemphys.2014.06.047Search in Google Scholar