1. bookVolume 62 (2020): Issue 1 (December 2020)
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
access type Open Access

Theoretical Study of the Electronic Properties of X2YZ (X = Fe, Co; Y = Zr, Mo; Z = Ge, Sb) Ternary Heusler: Abinitio Study

Published Online: 16 Dec 2020
Volume & Issue: Volume 62 (2020) - Issue 1 (December 2020)
Page range: 1 - 14
Received: 16 Jan 2020
Accepted: 22 Feb 2020
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
Abstract

In the purpose of exploring new Heusler alloys with different magnetic applications, we have employed first principles calculations method within density functional theory. After checking the structural stability of X2YZ Heusler alloys (X = Fe, Co; Y =Zr, Mo and Z = Ge, Sb), we found that Cu2MnAl type structure is more favorable for most compounds except for X2MoGe and Co2MoSb, were the Hg2CuTi structure is energetically more stable. The trends in magnetic and electronic structures can be predicted by the structure types as well as the different kinds of hybridizations between the constituents. Among the two series only two compounds were identified to be true half metals with potential applications in spintronic devices. While one compound was classified as a nonmagnetic semiconductor with a small band gap. For the rest of materials, we found that the metallic behavior is dominant. These materials show possible interesting features in technical applications as well. The effect of distortion on the magnetic properties of Co2ZrGe and Fe2ZrSb showed that the half metallic character was preserved within a moderate range of volume changes, which makes it possible to grow these materials as thin films with modern techniques.

Keywords

[1] A. Prinz, Science 282 (1998)1660.10.1126/science.282.5394.1660Search in Google Scholar

[2] J. de Boeck, W. van Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae, H. Boeve, K. Dessein and G. Borghs, Semicond. Sci. Technol. 17 (2002) 342.Search in Google Scholar

[3] H. P. J. Wijn. Heusler alloys. In: H. P. J. Wijn (eds), Magnetic Properties of Metals. Data in Science and Technology (Springer, Berlin, Heidelberg, 1991), pp. 168-173.10.1007/978-3-642-58218-9_7Search in Google Scholar

[4] R. A. de Groot, F. M. Mueller, P. G. van Engen and K. H. J. Buschow, Phys. Rev. Lett. 50 (1983) 2024.10.1103/PhysRevLett.50.2024Search in Google Scholar

[5] J. Kübler, A. R. Williams and C. B. Sommers, Phys. Rev. B 28 (1983) 1745.10.1103/PhysRevB.28.1745Search in Google Scholar

[6] P. J. Webster, J. Phys. Chem. Solids 32 (1971) 1221.10.1016/S0022-3697(71)80180-4Search in Google Scholar

[7] S. Brooks, J. M. Williams, Phys. Stat. Sol. A 32 (1975) 413.10.1002/pssa.2210320208Search in Google Scholar

[8] S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser and H.-J. Lin, Appl. Phys. Lett. 88 (2006) 032503.10.1063/1.2166205Search in Google Scholar

[9] T. Graf, C. Felser and S. S. Parkin, Prog. Solid State. Chem. 39 (2011) 1.10.1016/j.progsolidstchem.2011.02.001Search in Google Scholar

[10] T. Gasi, V. Ksenofontov, J. Kiss, S. Chadov, A. K. Nayak, M. Nicklas, J. Winterlik, M. Schwall, P. Klaer, P. Adler and C. Felser, Physical Review B 87 (2013) 064411.Search in Google Scholar

[11] N. I. Kourov, V. V. Marchenkov, K. A. Belozerova and H. W. Weber, Journal of Experimental and Theoretical Physics 121 (2015) 844–852.10.1134/S1063776115110047Search in Google Scholar

[12] N. Arıkan, A. İyigör, A. Candan, Ş. Uğur, Z. Charifi, H. Baaziz and G. Uğur, Journal of Materials Science 49 (2014) 4180–4190.10.1007/s10853-014-8113-7Search in Google Scholar

[13] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universitat Wien, Wien, Austria, 2001, ISBN: 3-9501031-1-2.Search in Google Scholar

[14] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.10.1103/PhysRevLett.77.386510062328Search in Google Scholar

[15] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864; W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.Search in Google Scholar

[16] J. C. Slater, Phys. Rev. 49 (1936) 53710.1103/PhysRev.49.537Search in Google Scholar

[17] I. Galanakis, Theory of Heusler and Full-Heusler Compounds, pp. 3-36, Springer International Publishing, Cham (2016).10.1007/978-3-319-21449-8_1Search in Google Scholar

[18] H.C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D: Appl. Phys. 40 (2007) 1507.Search in Google Scholar

[19] I. Galanakis, P. H. Dederichs and N. Papanikolaou, Phys. Rev. B 66 (2002) 174429.10.1103/PhysRevB.66.174429Search in Google Scholar

[20] S. Li, Y. Liu, Z. Ren, X. Zhang, and G. Liu, J. Korean. Phys. Soc. 65 (2014) 1059.10.3938/jkps.65.1059Search in Google Scholar

[21] Abada Ahmed; Hiadsi Said; Ouahrani Tarik; Amrani Bouhalouane; Amara Kadda. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 9 (2015) 349.Search in Google Scholar

[22] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64 (1992) 1065.Search in Google Scholar

[23] M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter 14 (2002) 2717.10.1088/0953-8984/14/11/301Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo