Open Access

A note on cohomology and algebraic geometric codes on the curves over rings

 and   
Jul 05, 2025

Cite
Download Cover

K. G. Bartley, J. L. Walker, Algebraic geometric codes over rings, Advances in Algebraic Geometry Codes, Series on Coding Theory and Cryptology, Vol. 5, World Scientific Publishing Co. Pte. Ltd., 2008. Search in Google Scholar

R. Blache, L-functions of exponential sums on curves over rings, Finite Fields Appl. 15 (2009), 345-359. Search in Google Scholar

R. Cramer, M. Rambaud, C. Xing, Asymptotically-good arithmetic secret sharing over/plwith strong multiplication and its applications to efficient MPC, Cryptology ePrint Archive, Paper 2019/832, 2019. Search in Google Scholar

D. Eisenbud, Commutative Algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics, Springer, 1995. Search in Google Scholar

A. Gathmann, Algebraic geometry, Class notes, TU Kaiserslautern, 2014. Search in Google Scholar

V. D. Goppa, Codes associated with divisors, Probl. Peredachi Inf. 13 (1977), 33-39, English translation in Probl. Inf. Transm. 13 (1977), 22-27. Search in Google Scholar

A. Grothendieck,Éléments de géométrie algébrique: I. Le langage des schémas, Publications Mathématiques de l’IHÉS Vol. 4, 1960, 5-228. Search in Google Scholar

R. Hartshorne, Residues and duality, Springer-Verlag, New York, 1966. Search in Google Scholar

R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Search in Google Scholar

A. J. de Jong et al, Stacks Project, Version 2dce121a, compiled on April 12, 2021, https://stacks.math.columbia.edu. Search in Google Scholar

Q. Liu, Algebraic geometry and arithmetic curves, Oxford University Press 2002. Search in Google Scholar

R. Pellikaan, B. - Z. Shen, G. J. M. Van Wee, Which linear codes are algebraic-geometric?, IEEE Trans. Inf. Theory 37 (1991), 583-602. Search in Google Scholar

C. Peskine, Introduction algébrique à la géométrie projective, Analyse complexe et géométrie, Université Paris 6, 2007. Search in Google Scholar

M. A. Tsfasman, S. G. Vlăduţ, Th. Zink, Modular curves, Shimura curves, and Goppa codes, better than the Varshamov-Gilbert bound, Math. Nachr. ℤ (1982), 21-28. Search in Google Scholar

J. F. Voloch, J. L. Walker, Lee weights of/4ℤ-codes from elliptic curves, Codes, Curves, and Signals: Common Threads in Communications (1998), 53-62. Search in Google Scholar

J. F. Voloch, J. L. Walker, Euclidean weights of codes from elliptic curves over rings, Trans. Am. Math. Soc. 352 (11) (2000), 5063-5076. Search in Google Scholar

J. F. Voloch, J. L. Walker, Codes over rings from curves of higher genus, IEEE Trans. Inf. Theory 45 (1999), 1768-1776. Search in Google Scholar

J. L. Walker, Algebraic geometric codes over rings, PhD thesis, University of Illinois at Urbana-Champaign, 1996. Search in Google Scholar

J. L. Walker, The Nordstrom-Robinson code is algebraic geometric, IEEE Trans. Inf. Theory 43 (5) (1997), 1588-1593. Search in Google Scholar

J. L. Walker, Algebraic geometric codes over rings, J. Pure Appl. Algebra 144 (1) (1999), 91-110. Search in Google Scholar

Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, General Mathematics