Open Access

Determinant Inequalities for Positive Definite Matrices Via Diananda’s Result for Arithmetic and Geometric Weighted Means

  
May 03, 2023

Cite
Download Cover

In this paper we prove among others that, if (Aj)j=1,...,m are positive definite matrices of order n ≥ 2 and qj ≥ 0, j = 1, ..., m with j=1mqj=1$$\sum\nolimits_{j = 1}^m {{q_j} = 1} $$, then 011mini{1,,m}{ qi }×[ i=1mqi(1qi)[ det(Ai) ]12n+11i<jmqiqj[ det(Ai+Aj) ]1 ]i=1mqi[ det(Ai) ]1[ det(i=1mqiAi) ]11mini{1,,m}{ qi }×[ i=1mqi(1qi)[ det(Ai) ]12n+11i<jmqiqj[ det(Ai+Aj) ]1 ].

Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, General Mathematics