1. bookVolume 56 (2018): Issue 1 (July 2018)
Journal Details
License
Format
Journal
eISSN
1841-3307
First Published
22 Nov 2012
Publication timeframe
1 time per year
Languages
English
Open Access

η-Ricci Solitons on Kenmotsu 3-Manifolds

Published Online: 07 Dec 2018
Volume & Issue: Volume 56 (2018) - Issue 1 (July 2018)
Page range: 51 - 63
Received: 26 May 2018
Accepted: 04 Oct 2018
Journal Details
License
Format
Journal
eISSN
1841-3307
First Published
22 Nov 2012
Publication timeframe
1 time per year
Languages
English

[1] D. E. Blair, Lecture notes in Mathematics, Springer-Verlag Berlin, 509,1976Search in Google Scholar

[2] D. E. Blair, Riemannian Geometry of contact and symplectic manifolds, Birkhäuser, Boston, 200210.1007/978-1-4757-3604-5Search in Google Scholar

[3] A. M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30, (2016), no. 2, 489-49610.2298/FIL1602489BSearch in Google Scholar

[4] A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20, (2015), 1-13Search in Google Scholar

[5] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc., 33(3), (2010), 361-368Search in Google Scholar

[6] T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties, Helv. Phys. Acta., 69, (1996), 344-347Search in Google Scholar

[7] T. Chave and G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B., 478, (1996), 758-77810.1016/0550-3213(96)00341-0Search in Google Scholar

[8] J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61, no. 2, (2009), 205-21210.2748/tmj/1245849443Search in Google Scholar

[9] U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifold, Indian J. pure appl. Math., 35, (2004), 159-165Search in Google Scholar

[10] F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition R.R=Q(S,R), Geometry and topology of submanifolds, World Sci., Singapore, 3, (1990), 108-130Search in Google Scholar

[11] F. Defever and R. Deszcz, Some results on geodesic mappings of Riemannian manifolds satisfying the condition R.R=Q(S,R), Periodica Mathematica Hungarica, 29, (1994), 267-27610.1007/BF01875853Search in Google Scholar

[12] R. Deszcz, On conformally flat Riemannian manifolds satisfying certain curvature conditions, Tensor (N.S.), 49, (1990), 134-145Search in Google Scholar

[13] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie, 55(103), 1, (2012), 41-50Search in Google Scholar

[14] S. Deshmukh, H. Alodan, and H. Al-Sodais, A Note on Ricci Soliton, Balkan J. Geom. Appl., 16, 1, (2011), 48-55Search in Google Scholar

[15] K.L. Duggal, Almost Ricci Solitons and Physical Applications, International Electronic Journal of Geometry, 2, (2017), 1-1010.1155/2016/4903520Search in Google Scholar

[16] D. Friedan, Non linear models in 2+ dimensions, Ann. Phys., 163, (1985), 318-41910.1016/0003-4916(85)90384-7Search in Google Scholar

[17] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7, (1978), 259-28010.1007/BF00151525Search in Google Scholar

[18] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, (Contemp. Math. Santa Cruz, CA, 1986), American Math. Soc., (1988), 237-26310.1090/conm/071/954419Search in Google Scholar

[19] S. Ianus and D. Smaranda, Some remarkable structures on the products of an almost contact metric manifold with the real line, Papers from the National Coll. on Geometry and Topology, Univ. Timisoara, (1997), 107-110Search in Google Scholar

[20] T. Ivey, Ricci solitons on compact 3-manifolds, Diff. Geom. Appl., 3, (1993), 301-30710.1016/0926-2245(93)90008-OSearch in Google Scholar

[21] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, (1972), 93-10310.2748/tmj/1178241594Search in Google Scholar

[22] J.A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32, (1985), 187-19310.5486/PMD.1985.32.3-4.07Search in Google Scholar

[23] D. G. Prakasha and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom., 108, (2017), 383-39210.1007/s00022-016-0345-zSearch in Google Scholar

[24] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21, (1969), 221-22810.2748/tmj/1178243031Search in Google Scholar

Recommended articles from Trend MD