Open Access

Reactive Magnetron Sputtering Control Based on an Analytical Condition of Stoichiometry


Cite

Luttrell, T, Halpegamage, S., Tao, J, Kramer, A., Sutter, E., and Batzill, M., “Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films”, Sci. Rep., vol. 4, pp. 1–8, 2014, doi: 10.1038/srep04043. Search in Google Scholar

López-Huerta, F. et al., “Biocompatibility and surface properties of TiO2 thin films deposited by DC magnetron sputtering”, Materials (Basel)., vol. 7, no. 6, pp. 4105–4117, 2014, doi: 10.3390/ma7064105. Search in Google Scholar

Möls, K. et al., “Influence of phase composition on optical properties of TiO2: Dependence of refractive index and band gap on formation of TiO2-II phase in thin films”, Opt. Mater. (Amst)., vol. 96, no. August, p. 109335, 2019, doi: 10.1016/j.optmat.2019.109335. Search in Google Scholar

SpaceX, “Brightness Mitigation Best Practices for Satellite Operators”, 2022, [Online]. Available: https://api.starlink.com/public-files/BrightnessMitigationBestPracticesSatelliteOperators.pdf Search in Google Scholar

Tomaszewski, H. et al., “TiO2 films prepared by DC magnetron sputtering from ceramic targets”, Vacuum, vol. 68, no. 1, pp. 31–38, 2002, doi: 10.1016/S0042-207X(02)00279-8. Search in Google Scholar

Schiller, S., Heisig, U., Steinfelder, K., and Strümpfel, J., “Reactive D.C. Sputtering with the Magnetron-Plasmatron for Tantalum Pentoxide and Titanium Dioxide Films,” in International Conference on Metallurgical Coatings, San Diego, California, U.S.A., San Diego, California: Elsevier Sequoia S.A., Lausanne, 1979, pp. 369–375. Search in Google Scholar

Christie, D. J., “Making Magnetron Sputtering Work: Modelling Reactive Sputtering Dynamics, Part 2”, SVC Bull., vol. 2015, no. Spring, pp. 30–33, 2015, [Online]. Available: http://www.svc.org/DigitalLibrary/documents/2016_Spring_DJC.pdf Search in Google Scholar

Kelemen, A. and Madarász, R. R., “Reactive magnetron sputtering: An offline parameter identification method,” SACI 2021 - IEEE 15th Int. Symp. Appl. Comput. Intell. Informatics, Proc., pp. 357–362, 2021, doi: 10.1109/SACI51354.2021.9465630. Search in Google Scholar

Depla, D., Buyle, G., Haemers, J., and De Gryse, R., “Discharge voltage measurements during magnetron sputtering”, Surf. Coatings Technol., vol. 200, no. 14–15, pp. 4329–4338, 2006, doi: 10.1016/j.surfcoat.2005.02.166. Search in Google Scholar

Depla, D., Haemers, J., and De Gryse, R., “Discharge voltage measurements during reactive sputtering of oxides”, Thin Solid Films, vol. 515, no. 2 SPEC. ISS., pp. 468–471, 2006, doi: 10.1016/j.tsf.2005.12.256. Search in Google Scholar

Depla, D., Heirwegh, S., Mahieu, S., Haemers, J., and De Gryse, R., “Understanding the discharge voltage behavior during reactive sputtering of oxides”, J. Appl. Phys., vol. 101, no. 1, 2007, doi: 10.1063/1.2404583. Search in Google Scholar

Berg, S., Nyberg, T., Blom, H., and Nender, C., “Computer modeling as a tool to predict deposition rate and film composition in the reactive sputtering process composition in the reactive sputtering process”, J. Vac. Sci. Technol. A, vol. 16, no. 3, pp. 1277–1285, 1998, doi: 10.1116/1.581274. Search in Google Scholar

György, K., Kelemen, A., and Papp, S., “Modeling and Stability Analysis of the Nonlinear Reactive Sputtering Process”, in The 5th Edition of the Interdisciplinarity in Engineering International Conference “Petru Maior” University of Tîrgu Mureş, 2011, pp. 11–15. Search in Google Scholar

Christie, D. J., “Making Magnetron Sputtering Work: Modelling Reactive Sputtering Dynamics, Part 1”, SVC Bull., vol. 2014, no. Fall, pp. 24–27, 2014, [Online]. Available: http://www.svc.org/DigitalLibrary/documents/2016_Spring_DJC.pdf Search in Google Scholar

Strijckmans, K., “Modeling the Reactive Magnetron Sputtering Process- PhD Thesis”, Universiteit Gent, 2015. Search in Google Scholar

Depla, D., Tomaszewski, H., Buyle, G., and De Gryse, R., “Influence of the target composition on the discharge voltage during magnetron sputtering”, Surf. Coatings Technol., vol. 201, no. 3–4, pp. 848–854, 2006, doi: 10.1016/j.surfcoat.2005.12.047. Search in Google Scholar

Terry, R., Gibbons, K., and Zarrabian, S., “United States Patent- 6,106,676”, 2000. Search in Google Scholar

Madarász, R. R., and Kelemen, A., “Stoichiometry control of the two gas reactive sputtering process”, in IEEE Joint CINTI - MACRo 2019, 2019. Search in Google Scholar