1. bookVolume 14 (2021): Issue 1 (December 2021)
Journal Details
License
Format
Journal
eISSN
2066-7744
First Published
12 Dec 2015
Publication timeframe
1 time per year
Languages
English
access type Open Access

The production methods of selenium nanoparticles

Published Online: 17 Dec 2021
Volume & Issue: Volume 14 (2021) - Issue 1 (December 2021)
Page range: 14 - 43
Journal Details
License
Format
Journal
eISSN
2066-7744
First Published
12 Dec 2015
Publication timeframe
1 time per year
Languages
English
Abstract

In recent years, the application of selenium nanoparticles has been increasing in medicine, agriculture, engineering, and food science. Therefore, researchers are converting inorganic selenium sources into nano form by various methods. Particularly both probiotics and pathogenic bacterial strains have the ability to synthesize selenium nanoparticles under aerobic and anaerobic conditions. Amazingly, dose-dependent selenium nanoparticles have antibacterial activity against their own pathogenic producer, even when added externally. Also, plant extracts and conventional chemical reducing agents continue to make a significant contribution to the production of selenium nanoparticles in an economic, eco-friendly, simple, and rapid way. Biological and chemical methods are suitable for the biological applications of selenium nanoparticles such as functional food or nutritional supplements and nanomedicine.

Keywords

[1] Alam, H., Khatoon, N., Raza, M., Ghosh, P. C., Sardar, M., Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. BioNanoScience, 9. 1. (2019) 96–104. https://doi.org/10.1007/s12668-018-0569-5.10.1007/s12668-018-0569-5 Search in Google Scholar

[2] An, C., Wang, S., Diameter-selected synthesis of single crystalline trigonal selenium nanowires. Materials Chemistry and Physics, 101. 2–3. (2007) 357–361. https://doi.org/10.1016/j.matchemphys.2006.06.011.10.1016/j.matchemphys.2006.06.011 Search in Google Scholar

[3] Andreoni, V., Luischi, M. M., Cavalca, L., Erba, D., Ciappellano, S., Selenite tolerance and accumulation in the Lactobacillus species. Annals of Microbiology, 50. (2000) 77–88. Search in Google Scholar

[4] Angamuthu, A., Venkidusamy, K., Muthuswami, R. R., Synthesis and characterization of nano-selenium and its antibacterial response on some important human pathogens. Current Science, 116. 2. (2019) 285. https://doi.org/10.18520/cs/v116/i2/285-290.10.18520/cs/v116/i2/285-290 Search in Google Scholar

[5] Anu, K., Singaravelu, G., Murugan, K., Benelli, G., Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on vero cells. Journal of Cluster Science, 28. 1. (2017) 551–563. https://doi.org/10.1007/s10876-016-1123-7.10.1007/s10876-016-1123-7 Search in Google Scholar

[6] Bai, K., Hong, B., He, J., Hong, Z., Tan, R., Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. International Journal of Nanomedicine, 12. (2017) 4527–4539. https://doi.org/10.2147/IJN.S129958.10.2147/IJN.S129958548589428684913 Search in Google Scholar

[7] Barnaby, S., Sarker, N., Dowdell, A., Bannerjee, I., The spontaneous formation of selenium nanoparticles on gallic acid assemblies and their antioxidant properties. The Fordham Undergraduate Research Journal, 1. 1. (2013) 3. Search in Google Scholar

[8] Boroumand, S., Safari, M., Shaabani, E., Shirzad, M., Faridi-Majidi, R., Selenium nanoparticles: Synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Materials Research Express, 6. 8. (2019) 0850d8. https://doi.org/10.1088/2053-1591/ab2558.10.1088/2053-1591/ab2558 Search in Google Scholar

[9] Cavalu, S., Kamel, E., Laslo, V., Fritea, L., Costea, T., Antoniac, I. V., Vasile, E., Antoniac, A., Semenescu, A., Mohan, A., Saceleanu, V., Vicas, S., Eco-friendly, facile and rapid way for synthesis of selenium nanoparticles production, structural and morphological characterization. Revista de Chimie, 68. 12. (2018) 2963–2966. https://doi.org/10.37358/RC.17.12.6017.10.37358/RC.17.12.6017 Search in Google Scholar

[10] Chapman, J., Sullivan, T., Regan, F., Nanoparticles in anti-microbial materials: Use and characterisation. RSC Pub. (2012). Search in Google Scholar

[11] Chen, H., Yoo, J.-B., Liu, Y., Zhao, G., Green synthesis and characterization of Se nanoparticles and nanorods. Electronic Materials Letters, 7. 4. (2011) 333–336. https://doi.org/10.1007/s13391-011-0420-4.10.1007/s13391-011-0420-4 Search in Google Scholar

[12] Chen, T., Wong, Y.-S., Zheng, W., Bai, Y., Huang, L., Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids and Surfaces B: Biointerfaces, 67. 1. (2008) 26–31. https://doi.org/10.1016/j.colsurfb.-2008.07.010. Search in Google Scholar

[13] Cogun, H. Y., Fırat, Ö., Fırat, Ö., Yüzereroğlu, T. A., Gök, G., Kargin, F., Kötemen, Y., Protective effect of selenium against mercury-induced toxicity on hematological and biochemical parameters of Oreochromis niloticus. Journal of Biochemical and Molecular Toxicology, 26. 3. (2012) 117–122. https://doi.org/10.1002/jbt.20417.10.1002/jbt.2041722162128 Search in Google Scholar

[14] Cremonini, E., Zonaro, E., Donini, M., Lampis, S., Boaretti, M., Dusi, S., Melotti, P., Lleo, M. M., Vallini, G., Biogenic selenium nanoparticles: Characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microbial Biotechnology, 9. 6. (2016) 758–771. https://doi.org/10.1111/1751-7915.12374.10.1111/1751-7915.12374507219227319803 Search in Google Scholar

[15] Cui, D., Liang, T., Sun, L., Meng, L., Yang, C., Wang, L., Liang, T., Li, Q., Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharmaceutical Biology, 56. 1. (2018) 528–534. https://doi.org/10.1080/13880209.2018.1510974.10.1080/13880209.2018.1510974 Search in Google Scholar

[16] Dhanjal, S., Cameotra, S. S., Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microbial Cell Factories, 9. 1. (2010) 52. https://doi.org/10.1186/1475-2859-9-52.10.1186/1475-2859-9-52 Search in Google Scholar

[17] Dodane, V., Vilivalam, V. D., Pharmaceutical applications of chitosan. Pharmaceutical Science & Technology Today, 1. 6. (1998) 246–253. https://doi.org/10.1016/S1461-5347(98)00059-5.10.1016/S1461-5347(98)00059-5 Search in Google Scholar

[18] Estevam, E. C., Griffin, S., Nasim, M. J., Denezhkin, P., Schneider, R., Lilischkis, R., Dominguez-Alvarez, E., Witek, K., Latacz, G., Keck, C., Schäfer, K.-H., Kieć-Kononowicz, K., Handzlik, J., Jacob, C., Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise? Journal of Hazardous Materials, 324. (2017) 22–30. https://doi.org/10.1016/j.jhazmat.2016.02.001.10.1016/j.jhazmat.2016.02.00126897703 Search in Google Scholar

[19] Eszenyi, P., Sztrik, A., Babka, B., Prokisch, J., Elemental, nano-sized (100–500 nm) selenium production by probiotic Lactic acid bacteria. International Journal of Bioscience, Biochemistry and Bioinformatics, 1. 2. (2011) 148–152. https://doi.org/10.7763/IJBBB.2011.V1.27.10.7763/IJBBB.2011.V1.27 Search in Google Scholar

[20] Fardsadegh, B., Jafarizadeh-Malmiri, H., Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis, 8. 1. (2019) 399–407. https://doi.org/10.1515/gps-2019-0007.10.1515/gps-2019-0007 Search in Google Scholar

[21] Fardsadegh, B., Vaghari, H., Mohammad-Jafari, R., Najian, Y., Jafarizadeh-Malmiri, H., Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Processing and Synthesis, 8. 1. (2019) 191–198. https://doi.org/10.1515/gps-2018-0060.10.1515/gps-2018-0060 Search in Google Scholar

[22] Fernandes, A. P., Wallenberg, M., Gandin, V., Misra, S., Tisato, F., Marzano, C., Rigobello, M. P., Kumar, S., Björnstedt, M., Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems. PloS One, 7. 11. (2012) e50727. https://doi.org/10.1371/journal.pone.0050727.10.1371/journal.pone.0050727351137123226364 Search in Google Scholar

[23] Fernández-Llamosas, H., Castro, L., Blázquez, M. L., Díaz, E., Carmona, M., Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microbial Cell Factories, 15. 1. (2016) 109. https://doi.org/10.1186/s12934-016-0510-y.10.1186/s12934-016-0510-y490876427301452 Search in Google Scholar

[24] Fritea, L., Laslo, V., Cavalu, S., Costea, T., Vicaş, I. S., Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Studia Universitatis Vasile Goldis Arad, Seria Stiintele Vietii, 27. (2017) 203–208. Search in Google Scholar

[25] Galbraith, M. L., Vorachek, W. R., Estill, C. T., Whanger, P. D., Bobe, G., Davis, T. Z., Hall, J. A., Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biological Trace Element Research, 171. 2. (2016) 338–343. https://doi.org/10.1007/s12011-015-0560-8.10.1007/s12011-015-0560-826537117 Search in Google Scholar

[26] Garousi, F., The essentiality of selenium for humans, animals, and plants, and the role of selenium in plant metabolism and physiology. Acta Universitatis Sapientiae, Alimentaria, 10. 1. (2017) 75–90. https://doi.org/10.1515/ausal-2017-0005.10.1515/ausal-2017-0005 Search in Google Scholar

[27] Giadinis, N. D., Loukopoulos, P., Petridou, E. J., Panousis, N., Konstantoudaki, K., Filioussis, G., Tsousis, G., Brozos, C., Koutsoumpas, A. T., Chaintoutis, S. C., Karatzias, H., Abortions in three beef cattle herds attributed to selenium deficiency. Pakistan Veterinary Journal, 36. 2. (2016) 145–148. Search in Google Scholar

[28] Gunti, L., Dass, R. S., Kalagatur, N. K., Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Frontiers in Microbiology, 10. (2019). https://doi.org/10.3389/fmicb.2019.00931.10.3389/fmicb.2019.00931650309731114564 Search in Google Scholar

[29] Hao, P., Zhu, Y., Wang, S., Wan, H., Chen, P., Wang, Y., Cheng, Z., Liu, Y., Liu, J., Selenium administration alleviates toxicity of chromium(VI) in the chicken brain. Biological Trace Element Research, 178. 1. (2017) 127–135. https://doi.org/10.1007/s12011-016-0915-9.10.1007/s12011-016-0915-928013456 Search in Google Scholar

[30] Kessi, J., Hanselmann, K. W., Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. Journal of Biological Chemistry, 279. 49. (2004) 50662–50669. https://doi.org/10.1074/jbc.M405887200.10.1074/jbc.M40588720015371444 Search in Google Scholar

[31] Kora, A. J., Bacillus cereus, selenite-reducing bacterium from contaminated lake of an industrial area: A renewable nanofactory for the synthesis of selenium nanoparticles. Bioresources and Bioprocessing, 5. 1. (2018) 30. https://doi.org/10.1186/s40643-018-0217-5.10.1186/s40643-018-0217-5 Search in Google Scholar

[32] Kora, A. J., Rastogi, L., Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management, 181. (2016) 231–236. https://doi.org/10.1016/j.jenvman.2016.06.029.10.1016/j.jenvman.2016.06.02927353373 Search in Google Scholar

[33] Kora, A. J., Rastogi, L., Bacteriogenic synthesis of selenium nanoparticles by Escherichia coli ATCC 35218 and its structural characterisation. IET Nanobiotechnology, 11. 2. (2017) 179–184. https://doi.org/10.1049/iet-nbt.2016.0011.10.1049/iet-nbt.2016.0011867628828477001 Search in Google Scholar

[34] Lampis, S., Zonaro, E., Bertolini, C., Bernardi, P., Butler, C. S., Vallini, G., Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microbial Cell Factories, 13. 1. (2014) 35. https://doi.org/10.1186/1475-2859-13-35.10.1186/1475-2859-13-35397534024606965 Search in Google Scholar

[35] Li, Q., Chen, T., Yang, F., Liu, J., Zheng, W., Facile and controllable one-step fabrication of selenium nanoparticles assisted by L-cysteine. Materials Letters, 64. 5. (2010) 614–617. https://doi.org/10.1016/j.matlet.2009.12.019.10.1016/j.matlet.2009.12.019 Search in Google Scholar

[36] Liang, T., Qiu, X., Ye, X., Liu, Y., Li, Z., Tian, B., Yan, D., Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech, 10. 1. (2019) 23. https://doi.org/10.1007/s13205-019-1999-7.10.1007/s13205-019-1999-7692508431903318 Search in Google Scholar

[37] Ma, J., Liu, X., Wu, Y., Peng, P., Zheng, W., Controlled synthesis of selenium of different morphologies at room temperature. Crystal Research and Technology, 43. 10. (2008) 1052–1056. https://doi.org/10.1002/crat.200800058.10.1002/crat.200800058 Search in Google Scholar

[38] Malhotra, S., Jha, N., Desai, K., A superficial synthesis of selenium nanospheres using wet chemical approach. International Journal of Nanotechnology and Application (IJNA), 3. 4. (2014) 7–14. Search in Google Scholar

[39] Medina Cruz, D., Mi, G., Webster, T. J., Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research. Part A, 106. 5. (2018) 1400–1412. https://doi.org/10.1002/jbm.a.36347.10.1002/jbm.a.3634729356322 Search in Google Scholar

[40] Menon, S., Shrudhi Devi, K. S., Agarwal, H., Shanmugam, V. K., Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid and Interface Science Communications, 29. (2019) 1–8. https://doi.org/10.1016/j.colcom.2018.12.004.10.1016/j.colcom.2018.12.004 Search in Google Scholar

[41] Mishra, R. R., Prajapati, S., Das, J., Dangar, T. K., Das, N., Thatoi, H., Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere, 84. 9. (2011) 1231–1237. https://doi.org/10.1016/j.chemosphere.2011.05.025.10.1016/j.chemosphere.2011.05.02521664643 Search in Google Scholar

[42] Mulla, N. A., Otari, S. V., Bohara, R. A., Yadav, H. M., Pawar, S. H., Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Materials Letters, 264. (2020) 127353. https://doi.org/10.1016/j.matlet.2020.127353.10.1016/j.matlet.2020.127353 Search in Google Scholar

[43] Prasad, K. S., Patel, H., Patel, T., Patel, K., Selvaraj, K., Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids and Surfaces B: Biointerfaces, 103. (2013) 261–266. https://doi.org/10.1016/j.colsurfb.-2012.10.029. Search in Google Scholar

[44] Prasad, K. S., Selvaraj, K., Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes. Biological Trace Element Research, 157. 3. (2014) 275–283. https://doi.org/10.1007/s12011-014-9891-0.10.1007/s12011-014-9891-024469678 Search in Google Scholar

[45] Prokisch J., Zommara M., Process for producing elemental selenium nanospheres (Patent No. US 8003071 B2) (2011). Search in Google Scholar

[46] Qin, Y., Ji, X., Jing, J., Liu, H., Wu, H., Yang, W., Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372. 1–3. (2010) 172–176. https://doi.org/10.1016/j.colsurfa.2010.10.013.10.1016/j.colsurfa.2010.10.013 Search in Google Scholar

[47] Ramamurthy, Ch., Sampath, K. S., Arunkumar, P., Kumar, M. S., Sujatha, V., Premkumar, K., Thirunavukkarasu, C., Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess and Biosystems Engineering, 36. 8. (2013) 1131–1139. https://doi.org/10.1007/s00449-012-0867-1.10.1007/s00449-012-0867-123446776 Search in Google Scholar

[48] Ramya, S., Shanmugasundaram, T., Balagurunathan, R., Biomedical potential of actinobacterially synthesised selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 32. (2015) 30–39. https://doi.org/10.1016/j.jtemb.2015.05.005.10.1016/j.jtemb.2015.05.00526302909 Search in Google Scholar

[49] Sasidharan, S., Sowmiya, R., Balakrishnaraja, R., Biosynthesis of selenium nanoparticles using Citrus Reticulata peel extract. World Journal of Pharmaceutical Research, 4. (2015) 1322–1330. Search in Google Scholar

[50] Satgurunathan, T., Bhavan, P., Komathi, S., Green synthesis of selenium nanoparticles from sodium selenite using garlic extract and its enrichment on Artemia nauplii to feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Research Journal of Chemistry and Environment, 21. 10. (2017) 1–12. Search in Google Scholar

[51] Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Shi, L., Wang, Q., Yang, R., Lei, F., Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Ruminant Research, 96. 1. (2011) 49–52. https://doi.org/10.1016/j.smallrumres.2010.11.005.10.1016/j.smallrumres.2010.11.005 Search in Google Scholar

[52] Shoeibi, S., Mashreghi, M., Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology, 39. (2017) 135–139. https://doi.org/10.1016/j.jtemb.2016.09.003.10.1016/j.jtemb.2016.09.00327908405 Search in Google Scholar

[53] Sowndarya, P., Ramkumar, G., Shivakumar, M. S., Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artificial Cells, Nanomedicine, and Biotechnology, 45. 8. (2017) 1490–1495. https://doi.org/10.1080/21691401.-2016.1252383. Search in Google Scholar

[54] Sribenjarat, P., Jirakanjanakit, N., Jirasripongpun, K., Selenium nanoparticles biosynthesised by garlic extract as antimicrobial agent. Science, Engineering and Health Studies. (2020) 22–31. https://doi.org/10.14456/sehs.2020.3. Search in Google Scholar

[55] Srivastava, N., Mukhopadhyay, M., Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technology, 244. (2013) 26–29. https://doi.org/10.1016/j.powtec.2013.03.050.10.1016/j.powtec.2013.03.050 Search in Google Scholar

[56] Srivastava, N., Mukhopadhyay, M., Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. Journal of Cluster Science, 26. 5. (2015a) 1473–1482. https://doi.org/10.1007/s10876-014-0833-y.10.1007/s10876-014-0833-y Search in Google Scholar

[57] Srivastava, N., Mukhopadhyay, M., Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess and Biosystems Engineering, 38. 9. (2015b) 1723–1730. https://doi.org/10.1007/s00449-015-1413-8.10.1007/s00449-015-1413-825972036 Search in Google Scholar

[58] Sun, K., Qiu, J., Liu, J., Miao, Y., Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. Journal of Materials Science, 44. 3. (2009) 754–758. https://doi.org/10.1007/s10853-008-3162-4.10.1007/s10853-008-3162-4 Search in Google Scholar

[59] Tejo Prakash, N., Sharma, N., Prakash, R., Raina, K. K., Fellowes, J., Pearce, C. I., Lloyd, J. R., Pattrick, R. A. D., Aerobic microbial manufacture of nanoscale selenium: Exploiting nature’s bio-nanomineralization potential. Biotechnology Letters, 31. 12. (2009) 1857–1862. https://doi.org/10.1007/s10529-009-0096-0.10.1007/s10529-009-0096-019690806 Search in Google Scholar

[60] Torres, S. K., Campos, V. L., León, C. G., Rodríguez-Llamazares, S. M., Rojas, S. M., González, M., Smith, C., Mondaca, M. A., Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. Journal of Nanoparticle Research, 14. 11. (2012) 1236. https://doi.org/10.1007/s11051-012-1236-3.10.1007/s11051-012-1236-3 Search in Google Scholar

[61] Tóth, R. J., Csapó, J., The role of selenium in nutrition – A review. Acta Universitatis Sapientiae, Alimentaria, 11. 1. (2018) 128–144. https://doi.org/10.2478/ausal-2018-0008.10.2478/ausal-2018-0008 Search in Google Scholar

[62] Tugarova, A. V., Kamnev, A. A., Proteins in microbial synthesis of selenium nanoparticles. Talanta, 174. (2017) 539–547. https://doi.org/10.1016/j.talanta.2017.06.013.10.1016/j.talanta.2017.06.01328738620 Search in Google Scholar

[63] Vetchinkina, E., Loshchinina, E., Kursky, V., Nikitina, V., Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. Journal of Microbiology (Seoul, Korea), 51. 6. (2013) 829–835. https://doi.org/10.1007/s12275-013-2689-5.10.1007/s12275-013-2689-524385361 Search in Google Scholar

[64] Vieira, A., Stein, E., Andreguetti, D., Cebrián-Torrejón, G., Doménech-Carbó, A., Colepicolo, P., Ferreira, A. M., “Sweet chemistry”: A green way for obtaining selenium nanoparticles active against cancer cells. Journal of the Brazilian Chemical Society, 28. 10. (2017) 2021–2027. https://doi.org/10.21577/0103-5053.20170025.10.21577/0103-5053.20170025 Search in Google Scholar

[65] Visha, P., Nanjappan, K., Jayachandran, S., Selvaraj, P., Elango, A., Kumaresan, G., Biosynthesis and structural characteristics of selenium nanoparticles using Lactobacillus acidophilus bacteria by wet sterilization process. International Journal of Advanced Veterinary Science and Technology, 4. 1. (2015) 178–183.10.23953/cloud.ijavst.183 Search in Google Scholar

[66] Vyas, J., Rana, S., Antioxidant activity and green synthesis of selenium nanoparticles using Allium sativum extract. International Journal of Phytomedicine, 9. 4. (2017) 634–641. https://doi.org/10.5138/09750185.2185.10.5138/09750185.2185 Search in Google Scholar

[67] Vyas, J., Rana, S., Biosynthesis of selenium nanoparticles using aloe vera leaf extract. International Journal of Advanced Research, 6. 1. (2018a) 104–110. https://doi.org/10.5281/zenodo.1173991. Search in Google Scholar

[68] Vyas, J., Rana, S., Synthesis of selenium nanoparticles using Allium sativum extract and analysis of their antimicrobial property against gram positive bacteria. The Pharma Innovation Journal, 7. 9. (2018b) 262–266.10.5138/09750185.2185 Search in Google Scholar

[69] Wang, H., Chen, B., He, M., Yu, X., Hu, B., Selenocystine against methyl mercury cytotoxicity in HepG2 cells. Scientific Reports, 7. 1. (2017) 147. https://doi.org/10.1038/s41598-017-00231-7.10.1038/s41598-017-00231-7542805028273949 Search in Google Scholar

[70] Wang, R. R., Pan, X. J., Peng, Z. Q., Effects of heat exposure on muscle oxidation and protein functionalities of pectoralis majors in broilers. Poultry Science, 88. 5. (2009) 1078–1084. https://doi.org/10.3382/ps.2008-00094.10.3382/ps.2008-0009419359698 Search in Google Scholar

[71] Wang, T., Yang, L., Zhang, B., Liu, J., Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids and Surfaces B: Biointerfaces, 80. 1. (2010) 94–102. https://doi.org/10.1016/j.colsurfb.2010.05.041.10.1016/j.colsurfb.2010.05.04120566271 Search in Google Scholar

[72] Xiong, Y., Xia, Y., Shape-controlled synthesis of metal nanostructures: The case of palladium. Advanced Materials, 19. 20. (2007) 3385–3391. https://doi.org/10.1002/adma.200701301.10.1002/adma.200701301 Search in Google Scholar

[73] Xu, C., Guo, Y., Qiao, L., Ma, L., Cheng, Y., Roman, A., Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Frontiers in Microbiology, 9. (2018) 1129. https://doi.org/10.3389/fmicb.2018.01129.10.3389/fmicb.2018.01129601588229967593 Search in Google Scholar

[74] Yazdi, M. H., Mahdavi, M., Varastehmoradi, B., Faramarzi, M. A., Shahverdi, A. R., The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: An in vivo study. Biological Trace Element Research, 149. 1. (2012) 22–28. https://doi.org/10.1007/s12011-012-9402-0.10.1007/s12011-012-9402-022476951 Search in Google Scholar

[75] Zare, B., Babaie, S., Setayesh, N., Shahverdi, A. R., Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomedicine Journal, 1. 1. (2013) 13–19. https://doi.org/10.7508/nmj.2013.01.002. Search in Google Scholar

[76] Zhang, J., Wang, X., Xu, T., Elemental selenium at nano size (nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with Se-methylselenocysteine in mice. Toxicological Sciences, 101. 1. (2008) 22–31. https://doi.org/10.1093/toxsci/kfm221.10.1093/toxsci/kfm22117728283 Search in Google Scholar

[77] Zhang, W., Chen, Z., Liu, H., Zhang, L., Gao, P., Li, D., Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids and Surfaces B: Biointerfaces, 88. 1. (2011) 196–201. https://doi.org/10.1016/j.colsurfb.2011.06.031.10.1016/j.colsurfb.2011.06.03121752611 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo