1. bookVolume 29 (2021): Issue 3 (November 2021)
Journal Details
License
Format
Journal
eISSN
1844-0835
First Published
17 May 2013
Publication timeframe
1 time per year
Languages
English
access type Open Access

Generalized Helicoidal Surfaces in Euclidean 5-space

Published Online: 23 Nov 2021
Page range: 269 - 283
Received: 03 Mar 2021
Accepted: 28 Apr 2021
Journal Details
License
Format
Journal
eISSN
1844-0835
First Published
17 May 2013
Publication timeframe
1 time per year
Languages
English
Abstract

In this paper, we study generalized helicoidal surfaces in Euclidean 5-space. We obtain the necessary and sufficient conditions for generalized helicoidal surfaces in Euclidean 5-space to be minimal, flat or of zero normal curvature tensor, which are ordinary differential equations. We solve those equations and discuss the completeness of the surfaces.

Keywords

MSC 2010

[1] K. Arslan, B. Bayram, B. Bulca, D. Kosova and G.Öztürk, Rotational surfaces in higher dimensional Euclidean spaces, Rend. Circ. Mat. Palermo, II. Ser, 67(2018), 59-66. Search in Google Scholar

[2] C. Baikoussis and T. Koufogioros, Helicoidal surfaces with prescribed mean or Gauss curvature, J. Geom. 63 (1998), 25-29.10.1007/BF01221235 Search in Google Scholar

[3] C.C. Beneki, G. Kaimakamis and B.J. Papantoniou, Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl. 275 (2002) 586–614.10.1016/S0022-247X(02)00269-X Search in Google Scholar

[4] M. P. Do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tôhoku Math. J. 34(3) (1982), 425-435.10.2748/tmj/1178229204 Search in Google Scholar

[5] F. Ji and Z. H. Hou, A kind of helicoidal surfaces in 3-dimensional Minkowski space, J. Math. Anal. Appl. 304 (2005) 632–643.10.1016/j.jmaa.2004.09.065 Search in Google Scholar

[6] F. Ji and Y. Wang, Linear Weingarten helicoidal surfaces in Minkowski 3-space, Differential Geometry-Dynamical Systems, 12 (2010), 95-101. Search in Google Scholar

[7] R. López and E. Demir, Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature, Cent. Eur. J. Math, 12(9) (2014), 1349-1361.10.2478/s11533-014-0415-0 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo