Impact of different extraction solvents and concentrations on the total phenolics content and bioactivity of the Algerian lemongrass (Cymbopogon citratus) extracts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
S. Bastianetto, R. Quirion, Natural extracts as possible protective agents of brain aging, Neurobiology of Aging 23 (2002) 891-897. DOI: 10.1016/s0197-4580(02)00024-6.Search in Google Scholar
R. Patel, R. Garg, S. Erande, G.B.M, Chemopreventive herbal anti-oxidants: current status and future perspectives, Journal of Clinical Biochemistry and Nutrition 40 (2007) 82-91. DOI: 10.3164/jcbn.40.82.Search in Google Scholar
G. Oboh, R.L. Puntel, J.B. Rocha, Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain - in vitro, Food Chemistry 102 (2007) 178-185. DOI: 10.1016/j.foodchem.2006.05.048.Search in Google Scholar
C.G. Silva, R.S. Herdeiro, C.J. Mathias, A.D. Panek, C.S. Silveira, V.P. Rodrigues, M.N. Rennó, D.Q. Falcão, D.M. Cerqueira, A.B. Minto, F.L,P. Nogueira, C.H Quaresma, J.F.M. Silva, F.S. Menezes, E.C.A. Eleutherio, Evaluation of antioxidant activity of Brazilian plants, Pharmacological Research 52 (2005) 229-233. DOI: 10.1016/j.phrs.2005.03.008.Search in Google Scholar
E.F. Pietrovski, K.A. Rosa, V.A. Facundo, K. Rios, M.C. Marques, A.R. Santos, Antinociceptive properties of the ethanolic extract and of the triterpene 3β,6β,16β-trihidroxilup-20(29)-ene obtained from the flowers of Combretum leprosum in mice, Pharmacology, Biochemistry and Behavior 83 (2006) 90-99. DOI: 10.1016/j.pbb.2005.12.010Search in Google Scholar
K. Yoo, C. Lee, H. Lee, B. Moon, C. Lee, Relative antioxidant and cytoprotective activities of common herbs, Food Chemistry 106 (2008) 929-936. DOI: 10.1016/j.foodchem.2007.07.006Search in Google Scholar
A. Figueirinha, A. Paranhos, J. Pérez-Alonso, C. Santos Buelga, M. Batista, Cymbopogon citratus leaves: Characterization of flavonoids by HPLC– PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols, Food Chemistry 110 (2008) 718-728. DOI: 10.1016/j.foodchem.2008.02.045Search in Google Scholar
B. Balakrishnan, P. Sadayan, A. Abimannan, Evaluation of the lemongrass plant (Cymbopogon citratus) extracted in different solvents for antioxidant and antibacterial activity against human pathogens, Asian Pacific Journal of Tropical Disease 4 (2014) S134-S139. DOI: 10.1016/S2222-1808(14)60428-X.Search in Google Scholar
J. Campos, G. Schmeda-Hirschmann, E. Leiva, L. Guzmán, R. Orrego, P. Fernández, M. González, C. Radojkovic, F.A. Zuñiga, L. Lamperti, et al. Lemongrass (Cymbopogon citratus (D.C) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidised low-density lipoprotein, Food Chemistry 151 (2014) 175-181. DOI: 10.1016/j.foodchem.2013.11.018Search in Google Scholar
C.E. Ekpenyong, E. Akpan, A. Nyoh, Ethnopharmacology, phytochemistry, and biological activities of Cymbopogon citratus (DC.) Stapf extracts, Chinese Journal of Natural Medicines 13 (2015) 321-337. DOI: 10.1016/s1875-5364(15)30023-6Search in Google Scholar
P. Garcia-Salas, A. Morales-Soto, A. Segura-Carretero, A. Fernández-Gutiérrez, Phenolic-compound-extraction systems for fruit and vegetable samples, Molecules 15 (2010) 8813-8826. DOI: 10.3390/molecules15128813Search in Google Scholar
J. Santas, R. Carbo, M. Gordon, M.J.F.C. Almajano, Comparison of the antioxidant activity of two Spanish onion varieties, Food Chemistry 107 (2008) 1210-1216Search in Google Scholar
V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, American Journal of Enology and Viticulture 16 (1965) 144-158.Search in Google Scholar
I. Gülçin, Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa, Amino Acids 32 (2007) 431-438. DOI: 10.1007/s00726-006-0379-xSearch in Google Scholar
A. Sychrová, G. Škovranová, M. Čulenová, S. Bittner Fialová, Prenylated flavonoids in topical infections and wound healing, Molecules 27 (2022) 4491. DOI: 10.3390/molecules27144491Search in Google Scholar
K. Chan, K. Tsang, B. Kong, Y.C. Zheng, Lunar regolith thermal behavior revealed by Chang’E-1 microwave brightness temperature data, Earth and Planetary Science Letters 295 (2010) 287-291. DOI: 10.1016/j.epsl.2010.04.015Search in Google Scholar
N. Chigozie, P. Aririguzo, I. Uchenna, C. Alisigwe, Determination of the total phenolic contents of essential oil obtained from Cymbopogon citratus (lemongrass) and Persea americana Mill (Avocado pear seed) and its bioactive component using GC-MS analysis, International Journal of Innovative Science and Research Technology 7 (2022) 127-138. DOI: 10.5281/zenodo.6251954Search in Google Scholar
B. Matthäus, Antioxidant activity of extracts obtained from residues of different oilseeds, Journal of Agricultural and Food Chemistry 50 (2002) 3444-3452. DOI: 10.1021/jf011440sSearch in Google Scholar
J.O. Olugbami, M.A. Gbadegesin, O.A. Odunola, In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus, African Journal of Medicine and Medical Sciences 43 (2014) 101-109.Search in Google Scholar
R. González-Montelongo, G. Lobo, M. Gonzalez, Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds, Food Chemistry 119 (2010) 1030-1039. DOI: 10.1016/j.foodchem.2009.08.012Search in Google Scholar
M. Naczk, F. Shahidi, Extraction and analysis of phenolics in food, Journal of Chromatography A 1054 (2004) 95-111.Search in Google Scholar
R. Chirinos, H. Rogez, D. Campos, R. Pedreschi, Y. Larondelle, Optimization of extraction conditions of antioxidant phenolic compounds from Mashua (Tropaeolum tuberoum Ruz & Pavon) tubers, Separation and Purification Technology 55 (2007) 217-225. DOI: 10.1016/j.seppur.2006.12.005Search in Google Scholar
M. Tan, C. Tan, Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems, International Food Research Journal 20 (2013) 3117-3123.Search in Google Scholar
N. Meneses, S. Martins, J. Teixeira, S. Mussatto, Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains, Separation and Purification Technology 108 (2013) 152–158. DOI: 10.1016/j.seppur.2013.02.015Search in Google Scholar
M.O. Downey, R.L. Hanlin, Comparison of ethanol and acetone mixtures for extraction of condensed tannin from grape skin, South African Journal of Enology and Viticulture 31 (2010) 154-159. DOI: 10.21548/31-2-1412Search in Google Scholar
S. Kallithraka, C. Garcia‐Viguera, P. Bridle, J.J.P. Bakker, Survey of solvents for the extraction of grape seed phenolics, Phytochemical Analysis 6 (1995) 265-267.Search in Google Scholar
R. Souza, L. Haberbeck, H. Riella, D. Ribeiro, B. Carciofi, Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process, Brazilian Journal of Chemical Engineering 36 (2019) 885-893. DOI: 10.1590/0104-6632.20190362s20180027Search in Google Scholar
B.C.J. De Silva, W.G. Jung, S. Hossain, S. Wimalasena, H. Pathirana, G.J. Heo, Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles, Laboratory Animal Research 33 (2017) 84-91. DOI: 10.5625/lar.2017.33.2.84Search in Google Scholar
B. Singh, V. Singh, R.K. Singh, N. Ebibeni, Antimicrobial activity of lemongrass (Cymbopogon citratus) oil against microbes of environmental, clinical and food origin, International Research Journal of Pharmacy and Pharmacology 1 (2011) 228-236.Search in Google Scholar