Cite

[1]. M. Lagoja, Pyrimidine as constituent of natural biologically active compounds, Journal of Chemistry and Biodiversity 2 (2005) 1-50. Search in Google Scholar

[2]. J.S. Gregory, The business saga of New York’s Syrian world, New York History 2 (2015) 197-216. Search in Google Scholar

[3]. S. Achelle, N. Plé, Pyrimidine ring as building block for the synthesis of functionalized π-conjugated materials, Current Organic Synthesis 2 (2012) 163-187. Search in Google Scholar

[4]. S. Achelle, N. Plé, A. Turck, Incorporation of pyridazine rings in the structure of functionalized π-conjugated materials, Royal Society of Chemistry Advances 1 (2011) 364-388. Search in Google Scholar

[5]. K. Itami, D. Yamazaki, J. Yoshida, Pyrimidine-core extended π-systems: general synthesis and interesting fluorescent properties, American Chemical Society 47 (2004) 15396-15397. Search in Google Scholar

[6]. M.C. Bagley, Z. Li, S. Pope, Barium manganate in microwave-assisted oxidation reactions: synthesis of solvatochromic 2, 4, 6 triaryl pyrimidines, Tetrahedron Letters 49 (2009) 6818-6822. Search in Google Scholar

[7]. S. Chandrasekaran, S. Nagarajan, Microwave-assisted synthesis of anti-bacterial activity of some 2-amino-6-aryl-4-(2-thienyl)pyrimidines, Il Farmaco 60 (2005) 279–282. Search in Google Scholar

[8]. K. Itami, D. Yamazkai, J. Yoshida, Pyrimidine-core extended π-systems: general synthesis and interesting fluorescent properties, Journal of American Chemical Society 47 (2004) 15396–15397. Search in Google Scholar

[9]. W. Guo, D. Liu, J. Liao, F. Ji, W. Wu, H. Jiang, Cu-Catalysed intermolecular [3+3] annulations involving oxidative activation of an unreactive C (sp3)-H bond: access to pyrimidine derivatives from amidines and ketones, Organic Chemistry Frontiers 6 (2017) 1107–1111. Search in Google Scholar

[10]. Y. Xing, B. Cheng, J. Wang, P. Lu, Y. Wang, Copper-catalyzed three-component synthesis of 3-aminopyrazoles and 4-iminopyrimidines via β-alkylnyl-N-sulfonyl ketenimine intermediates, Organic Letters 18 (2014) 4814–4817. Search in Google Scholar

[11]. A. Hasan, M. Khaleeq, U. Riaz, Synthesis and characterization of some new 2-amino-4-(4-substituted)diphenyl pyrimidines, Asian Journal of Chemistry 7 (2010) 5581–5587. Search in Google Scholar

[12]. N.D. Thanh, N.T.T. Mai, Synthesis of N-tetra-O-acetyl-β-d-glucopyranosyl –N’-(4’, 6’-diarylpyrimidin-2’-yl) thiourea, Carbohydrate Research 17 (2009) 2399–2405. Search in Google Scholar

[13]. M. Lagoja, Pyrimidines constituent of natural biological active compounds, Chemistry and Biodiversity 1 (2005) 1-50. Search in Google Scholar

[14]. J.P. Michael, Quinoline, quinazoline and acridone alkaloids, Natural Product Reports 22 (2005) 627-646. Search in Google Scholar

[15]. A.M. Joffe, J.D. Farley, D. Linden, G. Goldsand, Trimethoprim-sulfamethoxazole-associated aseptic meningitis: case reports and review of the literature, The American Journal of Medicine 3 (1989) 332 – 338. Search in Google Scholar

[16]. E. Petersen, D.R. Schmidt, Sulfadiazine and pyrimethamine in the postnatal treatment of congenital toxoplasmosis, Expert Review of Anti-Infective Therapy 1 (2003) 175 – 182. Search in Google Scholar

[17]. E. Nadal, E. Olavarria, Imatinib mesylate (Gleevec/glivec) a molecular-targeted therapy for chronic myeloid leukaemia and other malignancies, International Journal of clinical Practice 5 (2004) 511 – 516. Search in Google Scholar

[18]. P.K. Sharma, pyrimidine as anticancer agent, Journal of Advanced Scientific Research 3 (2011) 10-17. Search in Google Scholar

[19]. R.R. Hunt, J.F.M. Mcomic, E.R. Share, Pharmacological significances of pyrimidine derivatives, Journal of Chemical Science 11 (1959) 525-537. Search in Google Scholar

[20]. C.A.C. Hally, P. Maitland, A review on the synthesis and therapeutic potential of pyrimidine derivatives, Journal of Chemistry and Science 7 (1951) 3155-3167. Search in Google Scholar

[21]. W.J. Hale, The constitutional of acetyl acetone urea, Journal of the American Chemical Society 1 (1914) 104-115. Search in Google Scholar

[22]. A.R. Bhat, R.S. Dongre, R.S. Selokar, Potent in vitro antibacterial and antifungal activities of pyrano[2,3-d] pyrimidine derivatives with quantitative yield, International Journal of Pharmaceutical and Bio Sciences 5 (2014) 422–430. Search in Google Scholar

[23]. N. Kitamura, A. Ohnishi, Pyrimido pyrimidinedione derivatives and their use anti allergic agent, European Patent 163599 (1984). Search in Google Scholar

[24]. E.M. Grivsky, S.C. Lee, W. Sigel, D.S. Duch, C. A. Nichol, Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine, Journal of Medicinal Chemistry 3 (1980) 327–329. Search in Google Scholar

[25]. G.L. Anderson, J.L. Shim, A.D. Broom, Synthetic studies leading to various oxopyrido[2,3-d]pyrimidines, Journal of Organic Chemistry 7 (1976) 1095–1099. Search in Google Scholar

[26]. A. Rosowsky, C.E. Mota, S.F. Queener, Synthesis and antifolate activity of 2,4-diamino-5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidine analogues of trimetrexate and piritrexim, Journal of Heterocyclic Chemistry 1 (1995) 335–340. Search in Google Scholar

[27]. T.P. Selvam, C.R. James, P.V. Dniandev, S.K. Valzita, A mini review of pyrimidine and fused pyrimidine marketed drugs, Research in Pharmacy 4 (2015) 1–9. Search in Google Scholar

[28]. M.R. Buchmeiser, T. Schareina, R. Kempe, K. Wurst, Bis (pyrimidine) – based palladium catalysis: synthesis, X-Ray structure and applications in Heck-, Suzuki-, Sonogashira-Hagihara couplings and amination reactions, Journal of Organometallic Chemistry 1 (2001) 39–46. Search in Google Scholar

[29]. A.F. Costa, P.M. Pimentel, F.M. Aquino, D.M.A. Melo, M.A.F. Melo, I.M.G. Santos, Gelatin synthesis of CuFe2O4 and CuFeCrO4 ceramic pigments, Materials Letters 112 (2013) 58–61. Search in Google Scholar

[30]. H. Hou, G. Xu, S. Tan, Y. Zhu, A facile sol-gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: influence of the synthesis conditions, Infrared Physics & Technology 85 (2017) 261 – 265. Search in Google Scholar

[31]. El. Remaily, A.M. Abu-Dief, CuFe2O4 nanoparticles: an efficient heterogenous magnetically separable catalyst for synthesis of some novel propynyl -1H-Imidazoles derivatives, Tetrahedron 71 (2015) 2579 – 2584. Search in Google Scholar

[32]. Z. Lou, M. He, R. Wang, W. Qin, D. Zhao, C. Chen, Large-scale synthesis of mono disperse magnesium ferrite via an environmentally friendly molten salt route, Journal of Inorganic Chemistry 3 (2014) 2053–2057. Search in Google Scholar

[33]. A.A. Esmaeili, Habibib, A.R. Fakhari, Efficient synthesis of novel pyrano [2,3-d] pyrido [1,2-a] pyrimidine derivatives via isocyanide-based three component reactions, Tetrahedron Letters. 57 (2016) 100-102. Search in Google Scholar

[34]. R.O.M.A. De Souza, E.T. da Penha, H.M.S.M. Milagre, S.J. Garden, The three component Biginelli reaction: A combined experimental and theoretical investigation, Chemistry of European Journal 15 (2009) 9799 – 9804. Search in Google Scholar

[35]. B. Anjaneyulu, G.B. Dharma Rao, A mini review: Biginelli reaction for the synthesis of dihydropyrimidinones, International Journal of Engineering & Technology Research 3 (2015) 26-37. Search in Google Scholar

[36]. A. Misra, S. Jain, D. Kishore, V. Dave, K.R. Reddy, V. Sadhu, A facile one pot synthesis of novel pyrimidine derivatives of 1,5-benzodiazepines via domino reaction and their anti-bacterial evaluation, Journal of Microbiological Methods 163 (2019) 105648. DOI: 10.1016/j.mimet.2019.105648. Search in Google Scholar

[37]. M.M. Heravi, L. Ranjbar, F. Derikvand, B. Alimadadi, A three component one-pot synthesis of 4,6-diarylpyrimidin-2(1H)-ones under solvent-free conditions in the presence of sulfamic acid as a green and reusable catalyst, Molecular Diversity 12 (2008) 191-196. Search in Google Scholar

[38]. R. Arulkumaran, R. Sundararajan, V. Manikandan, V. Sathiyendiran, S. Pazhamalai G. Thirunarayanan, IR and 1H NMR spectral studies of some 2-Amino-4-isopropyl-6-methoxy-N-phenylpyrimidine-5-carboxamides: Assessment of substituent effects, International Letters of Chemistry Physics and Astrology 38 (2014) 15-25. Search in Google Scholar

[39]. R. Senbagam, M. Rajarajan, R. Vijayakumar, V. Manikandan, S. Balaji, G. Vanangamudi, G. Thirunarayanan, Synthesis, spectral correlations and antimicrobial activities of 2-pyrimidine Schiff’s bases, International Letters of Chemistry Physics and Astrology 53 (2015) 154-164. Search in Google Scholar

[40]. N. Maji, H.S. Dosanjh, Ferrite nanoparticles as catalysts in organic reactions: A mini review, Magnetochemistry 9 (2023) 156. DOI: 10.3390/magnetochemistry9060156 Search in Google Scholar

eISSN:
2286-038X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other