Cite

1. Alexandre, E. M., Santos-Pedro, D. M., Brandão, T. R. & Silva, C. L. (2011). Influence of aqueous ozone, blanching and combined treatments on microbial load of red bell peppers, strawberries and watercress. Journal of Food Engineering, 105(2), 277–282. https://doi.org/10.1016/j.jfoodeng.2011.02.032.10.1016/j.jfoodeng.2011.02.032 Search in Google Scholar

2. Bal, L. M., Meda, V., Naik, S. N. & Satya, S. (2011). Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmeceuticals. Food Research International, 44, 1718-1727. DOI:10.1016/j.foodres.2011.03.002 Open DOISearch in Google Scholar

3. Beveridge, T., Li, T. S. C., Oomah, B. D. & Smith, A. (1999). Sea buckthorn products: manufacture and composition. J Argic Food Chem., 47(9), 3480-8. https://doi.org/10.1021/jf981331m10.1021/jf981331m10552673 Search in Google Scholar

4. Borczak, B., Sikora, E., Sikora, M., Kapusta-Duch, J., Kutyła-Kupidura, E. M. & Fołta, M. (2016). Nutritional properties of whole meal wheat-flour bread with an addition of selected wild grown fruits. Starch, 68, 675-682. DOI:10.1002/STAR.201500298 Open DOISearch in Google Scholar

5. Carbone, K. & Mencarelli, F. (2015). Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes. Food and Bioprocess Technology, 8(8), 1739–1749. https://doi.org/10.1007/s11947-015-1515-y10.1007/s11947-015-1515-y Search in Google Scholar

6. Chen, C., Zhang, H., Xiao, W., Yong, Z.-P. & Bai, N. (2007). High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. Journal of Chromatography A, 1154, 250-259. DOI: 10.1016/j.chroma.2007.03.09717449044 Open DOISearch in Google Scholar

7. Contigiani, E. V., Jaramillo-Sánchez, G., Castro, M. A., Gomez, P. L. & Alzamora, S. M. (2018). Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: fungal spoilage, mechanical properties, and structure. Food and Bioprocess Technology, 11(9), 1639–1650. https://doi.org/10.1007/s11947-018-2127-0.10.1007/s11947-018-2127-0 Search in Google Scholar

8. Fu, L., Su, H., Li, R. & Cui, Y. (2014). Harvesting technologies for sea buckthorn fruit. Engineering in Agriculture, Enviroment and Food, 7 (2), 64-69. DOI:10.1016/j.eaef.2013.10.002 Open DOISearch in Google Scholar

9. Gorzelany, J., Belcar, J., Kuźniar, P., Niedbała, G. & Pentoś, K. (2022). Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning. Agriculture, 12(2), 200. https://doi.org/10.3390/agriculture1202020010.3390/agriculture12020200 Search in Google Scholar

10. Guo, R., Guo, X., Li, T., Fu, X. & Liu R. H. (2017). Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of sea buckthorn (Hippophae rhamnoides L.) berries. Food Chemistry, 221, 997-1003. DOI: 10.1016/j.foodchem.2016.11.06327979305 Open DOISearch in Google Scholar

11. He, C., Zhang, G., Zhang, J., Zeng, Y. & Liu, J. (2017). Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry. The FASEB Journal, 31, 1929 – 1938. DOI: 10.1096/fj.201600974R28126735 Open DOISearch in Google Scholar

12. Jaramillo-Sánchez, G., Contigiani, E. V., Castro, M., Hodara, K., Alzamora, S., Loredo, A., & Nieto, A. (2019). Freshness maintenance of blueberries (Vaccinium corymbosum L.) during postharvest Rusing ozone in aqueous phase: microbiological, structure, and mechanical issues. Food and Bioprocess Technology, 12(12), 2136–2147. https://doi.org/10.1007/s11947-019-02358-z10.1007/s11947-019-02358-z Search in Google Scholar

13. Jaroszewska, A., Biel, W. & Telesiński, A. (2018). Effect of mycorrhization and variety on the chemical composition and antioxidant activity of sea buckthorn berries. J. Elem. 23(2), 673 – 684. Search in Google Scholar

14. Jeppsson, N. & Gao, X. (2000). Changes in the contents of kaempferol, quercetin an L-ascorbic acid in sea buckthorn berries during maturation. Agricultural and Food Science in Finland, 9, 17 – 22. DOI: https://doi.org/10.23986/afsci.565210.23986/afsci.5652 Search in Google Scholar

15. Kawecki, Z., Szałkiewicz, M. & Bieniek, A. (2004). The common sea buckthorn – a valuable fruit. Journal of Fruit and Ornamental Plant Research, 12, 183-193, Search in Google Scholar

16. Khazaei, J. & Mann, D. D. (2004). Effect of Temperature and Loading Characteristics on Mechanical and Stress Relaxation Properties of Sea Buckthorn Berries. Part 2. Puncture Tests. Agricultural Engineering International: the CIOR Journal of Scientific Research and Development, Manuscript FP 03 010, Vol. VI. Search in Google Scholar

17. Lee, J. S. & Kim, J. M. (2020). Quality Characteristics and Antioxidant Properties of White Pan Bread Added with Sea Buckthorn (Hippophae rhamnoides L.) Berry Powder. Korean J. Food Nutr., 5, 473-482. https://doi.org/10.9799/ksfan.2020.33.5.473 Search in Google Scholar

18. Ma, X., Yang, W., Kallio, H. & Yang, B. (2021). Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides), Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2020.186992133412908 Open DOISearch in Google Scholar

19. Michalak, M., Podsędek, A. & Glinka, R. (2016). Potencjał przeciwutleniający oraz związki polifenolowe glikolowych ekstraktów z Hippophae rhamnoides L. Post. Fitoter. 17(1), 33-38. Search in Google Scholar

20. Mikulic-Petkovsek, M., Slatnar, A., Stampar, F. & Veberic, R. (2012). HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chemistry, 135 (4), 2138–2146. DOI: 10.1016/j.foodchem.2012.06.11522980782 Open DOISearch in Google Scholar

21. Nowakowska, M., Ochmian, I. & Mijowska, K. (2017). Assessment of the sea buckthorn growing in urban conditions – The quality of berries and leaves. Journal of Elementology, 22(2), 399 – 409. DOI: 10.5601/jelem.2016.21.2.1168 Open DOISearch in Google Scholar

22. Piechowiak, T., Antos, P., Józefczyk, R., Kosowski, P., Skrobacz, K., & Balawejder, M. (2019a). Impact of ozonation process on the microbiological contamination and antioxidant capacity of highbush blueberry Vaccinum corymbosum L. fruit during cold storage. Ozone Science & Engineering, 41(4), 376-385. https://doi.org/10.1080/01919512.2018.154092210.1080/01919512.2018.1540922 Search in Google Scholar

23. Piechowiak, T., Antos, P., Kosowski, P., Skrobacz, K., Józefczyk, R. & Balawejder, M. (2019b). Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agric. Food Sci., 28, 35–44. DOI: https://doi.org/10.23986/afsci.7029110.23986/afsci.70291 Search in Google Scholar

24. Piłat, B. & Zadernowski, R. (2019). Rokitnik zwyczajny (Hippophae rhamnoides L.) w profilaktyce nowotworowej. Post. Fitoter. 20(2), 111-117. DOI: https://doi.org/10.25121/PF.2019.20.2.11110.25121/PF.2019.20.2.111 Search in Google Scholar

25. Piłat, B. & Zadernowski, R. (2016). Owoce rokitnika (Hippophae rhamnoides L.) – bogate źródło związków biologicznie aktywnych. Post. Fitoter. 4, 298-306. Search in Google Scholar

26. Polska Norma PN-90/A-75101-03:1990. Fruit and vegetable preserves. Preparation of samples for physicochemical tests. Determination of dry matter content by the gravimetric method. Polski Komitet Normalizacyjny. Search in Google Scholar

27. Polska Norma PN-EN-12147:2000. Fruit and vegetable juices - Determination of titrable acidity. Polski Komitet Normalizacyjny. Search in Google Scholar

28. Polska Norma PN-A-04019:1998. Food products - Determination of vitamin C content. Polski Komitet Normalizacyjny. Search in Google Scholar

29. Pop, R. M., Weesepoel, Y., Socaciu, C., Pintea, A., Vincken, J.-P. & Gruppen, H. (2014). Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chemistry, 147, 1-9. DOI: 10.1016/j.foodchem.2013.09.08324206678 Open DOISearch in Google Scholar

30. Sadowska, U., Żabińska, A. & Mudryk, K. (2014). Values of the binding force of common sea buckthorn with a plant. Agricultural Engineering, 4(152), 213-220. DOI: http://dx.medra.org/10.14654/ir.2014.152.096 Search in Google Scholar

31. Shahbazi, F., Sharafi, R., Moomevandi, S.J. & Daneshvar, M. (2015). Influence of foliar iron fertilization rate on the breakage susceptibility of wheat seeds. J. Plant Nutr., 38, 2204–2216, doi:10.1080/01904167.2015.1043379. Open DOISearch in Google Scholar

32. Sytařová, I., Orsavová, J., Snopek, L., Mlček, J., Byczyński, Ł. & Mišurcová, L. (2020). Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chemistry, 310, 125784. DOI: 10.1016/j.foodchem.2019.12578431816534 Open DOISearch in Google Scholar

33. Szpunar-Krok, E., Kuźniar, P., Pawlak, R. & Migut, D. (2021). The effect of foliar fertilization on the resistance of pea (Pisum sativum L.) seeds to mechanical damage. Agronomy-Basel, 11, 189. https://doi.org/10.3390/agronomy1101018910.3390/agronomy11010189 Search in Google Scholar

34. Teleszko, M., Wojdyło, A., Rudzińska, M., Oszmiański, J. & Golis, T. (2015). Analysis of lipophilic and hydrophilic bioactive compounds content in Sea buckthorn (Hippophaë rhamnoides L.) berries. J. Argic. Food Chem., 63(16), 4120-4129. DOI: 10.1021/acs.jafc.5b0056425893239 Open DOISearch in Google Scholar

35. Ulanowska, K., Skalski, B. & Olas, B. (2018). Rokitnik zwyczajny (Hippophae rhamnoides L.) jako źródło związków o aktywności przeciwnowotworowej i radioprotekcyjnej. Post. Hig. Med. Dośw., 72, 240-252. DOI: 10.5604/01.3001.0011.7481 Open DOISearch in Google Scholar

36. Zapałowska, A., Matłok, N., Zardzewiały, M., Piechowiak, T. & Balawejder, M. (2021). Effect of ozone treatment on the quality of sea buckhorn (Hippophae rhamnoides L.). Plants, 10 (5), 847. https://doi.org/10.3390/plants1005084710.3390/plants10050847814660133922199 Search in Google Scholar

37. Żurek, N., Karatsai, O., Rędowicz, M. J., Kapusta, I. (2021). Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules, 26, 9, 2656. DOI: 10.3390/molecules26092656812427434062758 Open DOISearch in Google Scholar

eISSN:
2344-150X
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, other, Food Science and Technology