1. bookVolume 22 (2018): Issue 2 (December 2018)
Journal Details
License
Format
Journal
eISSN
2344-150X
First Published
30 Jul 2013
Publication timeframe
2 times per year
Languages
English
access type Open Access

Total Phenolic Content and Antioxidant Capacity of Different Parts of Cucumber (Cucumis sativus L.)

Published Online: 03 Jan 2019
Page range: 13 - 20
Journal Details
License
Format
Journal
eISSN
2344-150X
First Published
30 Jul 2013
Publication timeframe
2 times per year
Languages
English
Abstract

The aims of this research were to estimate the polyphenol content and antioxidant capacity from different parts of cucumber. The antioxidant activity was investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP), total flavonoid and phenolic contents were estimated using aluminium chloride and Folin-Ciocalteau reagents assays, respectively. Our finding showed that the ethanolic peel extract contained the highest phenolic (23.08 mg GAE/g) and flavonoids (14.02 mg QE/g). Also, ethanolic peel extract demonstrated significantly (p<0.05) higher FRAP value. Pearson correlation revealed that there were positive correlations (p<0.01) between TPC and TFC with FRAP assay. These findings suggest that consumption of cucumber with peel may provide optimum health benefit than its peeled counterpart.

Keywords

1. Abozed, S. S., El-kalyoubi, M., Abdelrashid A. & Salama, M. F. (2014). Total phenolic contents and antioxidant activities of various solvent extracts from whole wheat and bran. Annals of Agricultural Sciences, 59(1), 63–67. doi:10.1016/j.aoas.2014.06.009.10.1016/j.aoas.2014.06.009Open DOISearch in Google Scholar

2. Albishi, T., John, J. A., Al-Khalifa, A. S., & Shahidi, F. (2013). Antioxidative phenolic constituents of skins of onion varieties and their activities. Journal of Functional Foods, 5(3), 1191–1203. doi:10.1016/j.jff.2013.04.002.10.1016/j.jff.2013.04.002Open DOISearch in Google Scholar

3. Asghar, N., Naqvi, S. A. R., Hussain, Z., Rasool, N., Khan, Z. A., Shahzad, S. A., Sherazi, T. A., Janjua, M. R. S. A., Nagra, S. A., Zia-Ul-Haq, M. & Jaafar, H. Z. (2016). Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chemistry Central Journal, 10(1), 5. doi:10.1186/s13065-016-0149-0.10.1186/s13065-016-0149-0Open DOISearch in Google Scholar

4. Benzie, I. F. F., Strain, J. J., (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239, 70–76.10.1006/abio.1996.0292Search in Google Scholar

5. Boeing, J. S., Barizão, É. O., e Silva, B. C., Montanher, P. F., Almeida, V. C., & Visentainer, J. V. (2014). Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal, 8(1), 48. doi:10.1186/s13065-014-0048-1.10.1186/s13065-014-0048-1Open DOISearch in Google Scholar

6. Deng, G. F., Lin, X., Xu, X. R., Gao, L. L., Xie, J. F., & Li, H. B. (2013). Antioxidant capacities and total phenolic contents of 56 vegetables. Journal of Functional Foods, 5(1), 260–266. doi:10.1016/j.jff.2012.10.015.10.1016/j.jff.2012.10.015Open DOISearch in Google Scholar

7. Dudonné, S., Vitrac, X., Coutiére, P., Woillez, M., & Mérillon, J. M. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5), 1768–1774. doi:10.1021/jf803011r.10.1021/jf803011rOpen DOISearch in Google Scholar

8. Hafsé, M., Farah, A., Mouktadir, J. E., & Fikri-Benbrahim, K. (2017). Antioxidant and anti-inflammatory activities evaluation of Coriaria myrtifolia from the North of Morocco. International Food Research Journal, 24(2), 498–502.Search in Google Scholar

9. Henríquez, C., Almonacid, S., Chiffelle, I., Valenzuela, T., Araya, M., Cabezas, L., Simpson, R. & Speisky, H. (2010). Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five Apple cultivars grown in Chile. Chilean Journal of Agricultural Research, 70(4), 523–536. doi:10.4067/S0718-58392010000400001.10.4067/S0718-58392010000400001Open DOISearch in Google Scholar

10. Ibrahim, M. E. E., & El-masry, H. G. (2016). Phenolic content and antioxidant activity of Cantaloupe (Cucumis melo var. cantalupensis) and food application, 5(1), 16–24. doi:10.11648/j.ijnfs.20160501.13.10.11648/j.ijnfs.20160501.13Search in Google Scholar

11. Ikram, E. H. K., Eng, K. H., Jalil, A. M. M., Ismail, A., Idris, S., Azlan, A., Mohd Nazri, H. S., Diton, N. A. M. & Mokhtar, R. A. M. (2009). Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. Journal of Food Composition and Analysis, 22(5), 388–393. doi:10.1016/j.jfca.2009.04.001.10.1016/j.jfca.2009.04.001Open DOISearch in Google Scholar

12. Jakovljević, Z. D., Stanković, S. M. & Topuzović, D. M. (2013). Seasonal variability of Chelidonium majus L. secondary metabolites content and antioxidant activity. EXCLI Journal, 12, 260-268. doi:10.17877/DE290R-5473.Search in Google Scholar

13. Kahkonen, M. P., Hopia, A. I., Vuorela, H. J., Raucha, J. P., Pihlaja, K., Kujala, T. S. & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962. doi:10.1021/jf990146l.10.1021/jf990146lSearch in Google Scholar

14. Kalt, W., & Kushad, M. M. (2000). The role of oxidative stress and antioxidants in plant and human health: Introduction to the colloquium. HortScience, 35(4).10.21273/HORTSCI.35.4.572Search in Google Scholar

15. Kaur, C. & Kapoor, H. C. (2002). Antioxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science and Technology, 37(2), 153-61. https://doi.org/10.1046/j.1365-2621.2002.00552.x.10.1046/j.1365-2621.2002.00552.xOpen DOISearch in Google Scholar

16. Kaur, G. & Aggarwal, P. (2013). Phytochemicals in some common vegetables and their correlation with the antioxidant activity. International Journal of Scientific Research Science, 2(12), 2277 – 8179.Search in Google Scholar

17. Kang, H. M., & Saltveit, M. E. (2002). Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high- and low-vigour cucumber seedling radicles. Plant, Cell and Environment, 25(10), 1233–1238. doi:10.1046/j.1365-3040.2002.00915.x.10.1046/j.1365-3040.2002.00915.xSearch in Google Scholar

18. Kong, K. W., Khoo, H. E., Prasad, N. K., Chew, L. Y. & Amin, I. (2013). Total phenolics and antioxidant activities of Pouteria campechiana fruit parts. Sains Malaysiana, 42(2), 123–127.Search in Google Scholar

19. Kumaraswamy, L. (2016). A comparative study on antioxidant activities of three cultivars of Cucumis sativas (Linn). International Journal of Research in Biotechnology and Biochemistry, 6(1), 1–5.Search in Google Scholar

20. Maisarah, A., Nurul Amira, B., Asmah, R. & Fauziah, O. (2013). Antioxidant analysis of different parts of Carica papaya. International Food Research Journal, 20(3), 1043–1048.Search in Google Scholar

21. Melo, E. D. A., Lima, V. L. A. G., Maciel, M. I. S., Caetano, A. C. S. & Leal, F. L. L. (2006). Polyphenol, ascorbic acid and total carotenoid contents in common fruits and vegetables. Brazilian Journal of Food Technology, 9, 89-94.Search in Google Scholar

22. Pantelić, M. M., Dabić Zagorac, D. C., Davidović, S. M., Todić, S. R., Bešlic, Z. S., Gašic, U. M., Tešic, Z. L. & Natic, M. M. (2016). Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chemistry, 211, 243–252. doi:10.1016/j.foodchem.2016.05.051.10.1016/j.foodchem.2016.05.051Open DOISearch in Google Scholar

23. Prior, R. L. & Cao, G. (2000). Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. HortScience, 35(4), 588–592.10.21273/HORTSCI.35.4.588Search in Google Scholar

24. Qusti, S. Y., Abo-khatwa, A. N., & Lahwa, M. A. (2010). Screening of antioxidant activity and phenolic content of selected food items cited in the Holly Quran. European Journal of Biological Sciences, 2(1), 40–51.Search in Google Scholar

25. Ritschel, P. S., Lins, T. C. L., Tristan, R. L., Buso, G. S. C., Buso, J. A. & Ferreira, M. E. (2004). Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biology, 4(1), 9. https://doi.org/10.1186/1471-2229-4-9.10.1186/1471-2229-4-9Open DOISearch in Google Scholar

26. Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic– phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.Search in Google Scholar

27. Sotiroudis, G., Melliou, E., Sotiroudis, T. G., & Chinou, I. (2010). Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (Cucumis sativus) cultivars. Journal of Food Biochemistry, 34(1), 61–78. doi:10.1111/j.1745-4514.2009.00296.x.10.1111/j.1745-4514.2009.00296.xOpen DOISearch in Google Scholar

28. Sreeramulu, D., & Raghunath, M. (2010). Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Research International, 43(4), 1017– 1020. doi:10.1016/j.foodres.2010.01.009.10.1016/j.foodres.2010.01.009Open DOISearch in Google Scholar

29. Stagos, D., Portesis, N., Spanou, C., Mossialos, D., Aligiannis, N., Chaita, E., Panagoulis, C., Reri, E., Skaltsounis, L., Tsatsakis, A. M. & Kouretas, D. (2012). Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food and Chemical Toxicology, 50(11), 4115–4124. doi:10.1016/j.fct.2012.08.033.10.1016/j.fct.2012.08.033Open DOISearch in Google Scholar

30. Stratil, P., Klejdus, B. & Kuban, V. (2006). Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods. Journal of Agricultural and Food Chemistry, 54, 607–616. doi:10.1021/jf052334j.10.1021/jf052334jOpen DOISearch in Google Scholar

31. Vissotto, L. C., Rodrigues, E., Chisté, R. C., Benassi, M. T. & Mercadante, A. Z. (2013). Correlation, by multivariate statistical analysis, between the scavenging capacity against reactive oxygen species and the bioactive compounds from frozen fruit pulps. Ciência E Tecnologia de Alimentos, 33, 57–65. doi:10.1590/S0101-20612013000500010.10.1590/S0101-20612013000500010Open DOISearch in Google Scholar

32. Yamaguchi, T., Mizobuchi, T. & Kajikawa, R. (2001). Radical-scavenging activity of vegetables and the effect of cooking on their activity. Food Science and Technology Research, 7(3), 250– 257. doi:10.3136/fstr.7.250.10.3136/fstr.7.250Open DOISearch in Google Scholar

33. Yoswathana, N. & Eshtiaghi, M. N. (2013). Optimization for subcritical water extraction of phenolic compounds from rambutan peels. World Academy of Science, Engineering and Technology, 7(6), 122–126.Search in Google Scholar

34. Zhong, Y., Khan, M. A. & Shahidi, F. (2007). Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa). Journal of Agricultural and Food Chemistry, 55(4), 1188–1192. doi:10.1021/jf063085h.10.1021/jf063085hOpen DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo