1. bookVolume 9 (2022): Issue 1 (March 2022)
Journal Details
License
Format
Journal
eISSN
2603-347X
First Published
15 Dec 2015
Publication timeframe
1 time per year
Languages
English
access type Open Access

Antimicrobial drug resistance against the background of the COVID-19 pandemic in Bulgaria and Europe: A profound review of the available literature sources

Published Online: 18 Jun 2022
Volume & Issue: Volume 9 (2022) - Issue 1 (March 2022)
Page range: 47 - 55
Journal Details
License
Format
Journal
eISSN
2603-347X
First Published
15 Dec 2015
Publication timeframe
1 time per year
Languages
English
Abstract

Improper use of antibiotics is an extremely worrying trend worldwide. This leads to the development of resistance to these drugs. As a result, antibiotics stop working and bacteria continue to grow. The highest levels of resistance, both in our country and worldwide, are to second and third-generation cephalosporins, some aminoglycosides, and others. The reason is that these antibiotics have been used most irrationally over the years. The pandemic of COVID-19 and Antimicrobial drug resistance (AMR) are parallel and interrelated serious health situations, between which there is a causal link, manifested in high mortality among the human population. This review highlights relations between growth rates of antimicrobial resistance and the Covid-19 pandemic situations in Bulgaria and Europe in this fast-growing research area.

Keywords

[1]. Adebisi, Y. A.; Alaran, A. J.; Okereke, M.; Oke, G. I.; Amos, O. A.; Olaoye, O. C.; Oladunjoye, I.; Olanrewaju, A. Y.; Ukor, N. A.; Lucero-Prisno, D. E., 3rd COVID-19 and Antimicrobial Resistance: A Review. Infectious Diseases, 2021, 14, https://doi.org/10.1177/11786337211033870. Search in Google Scholar

[2]. Vidovic, N.; Vidovic, S., Antimicrobial resistance and food animals: influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics. 2020, 9, 52. Search in Google Scholar

[3]. Beović, B.; Doušak, M.; Ferreira-Coimbra, J. et al. Antibiotic use in patients with COVID-19: a ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) Survey. Journal of Antimicrobial Chemotherapy. 2020, 75, 3386-3390. Search in Google Scholar

[4]. Rezasoltani S, Yadegar A, Hatami B, Asadzadeh Aghdaei H, Zali MR. Antimicrobial resistance as a hidden menace lurking behind the COVID-19 outbreak: the global impacts of too much hygiene on AMR. Frontiers in Microbiology. 2020, 11, 590683. Search in Google Scholar

[5]. Weiner-Lastinger, LM; Abner, S; Edwards, JR; et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015-2017. Infection Control & Hospital Epidemiology. 2020, 41, 1-18. Search in Google Scholar

[6]. Del Rio, C; Malani, PN., COVID-19-new insights on a rapidly changing epidemic. JAMA. 2020, 323, 1339. Search in Google Scholar

[7]. Rawson, TM; Ming, D; Ahmad, R; Moore, LSP; Holmes, AH, Antimicrobial use, drug-resistant infections and COVID-19. Nature Reviews Microbiology. 2020, 18, 409-410. Search in Google Scholar

[8]. Akpan, MR; Isemin, NU; Udoh, AE; Ashiru-Oredope, D, Implementation of antimicrobial stewardship programmes in African countries: a systematic literature review. Journal of Global Antimicrobial Resistance. 2020, 22, 317-324. Search in Google Scholar

[9].www.mh.government.bg/bg/informaciya-za-grazhdani/zdravosloven-nachin-na-zhivot/zaraznizabolyavaniya/informaciya-za-antibioticite/ Search in Google Scholar

[10]. https://clinica.bg/18976-15--po-malko-antibiotici-v-ES. Search in Google Scholar

[11]. Stoeva, Т.; Bojkova, K.; Savov, E.; Mihaylova, S.; Sredkova, М., Antimicrobial resistance of clinical isolates Acinetobacter baumannii, Union of Bulgarian Medical Specialists, 2007, 58(5).10.1016/S0924-8579(07)71968-4 Search in Google Scholar

[12]. Ruiz, J., Enhanced antibiotic resistance as a collateral COVID-19 pandemic effect? Journal of Hospital Infection. 2021, 107, 114–115. doi: 10.1016/j.jhin.2020.11.010. Open DOISearch in Google Scholar

[13]. Sharifipour, E.; Shams, S.; Esmkhani, M.; Khodadadi, J.; Fotouhi-Ardakani, R.; Koohpaei, A., Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infectious Diseases. 2020, 20, 646. doi: 10.1186/s12879-020-05374-z. Open DOISearch in Google Scholar

[14]. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, 395, 497–506. doi: 10.1016/S0140-6736(20)30183-5. Open DOISearch in Google Scholar

[15]. Ignatova-Ivanova, Ts.; Ibrjmova, S.; Andreeva, A., Ivanov, R., Study of Biofilm Formation from Lactobacillus Fermentum S Cultivated on Different Carbohydrates. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017, 8(6), 282-289. Search in Google Scholar

[16].https://www.covid19treatmentguidelines.nih.gov/management/critical-care/oxygenation-and-ventilation/. Search in Google Scholar

[17]. Ignatova-Ivanova, Ts.; Ibrjmova, S.; Ismailov, I., Christov, V.; Ivanov, R., Adhesion and surface growth of Staphylococcus aureus and Lactobacillus plantarum on various metals. Journal of IMAB, 2015, Vol. 21, Issue 2. doi: http://dx.doi.org/10.5272/jimab.2015212.793.10.5272/jimab.2015212.793 Search in Google Scholar

[18]. Zavala-Flores, E.; Salcedo-Matienzo, J., Medicación prehospitalaria en pacientes hospitalizados por COVID-19 en un hospital público de Lima-Perú. Acta Medica Peruana. 2020, 37. doi: 10.35663/amp.2020.373.1277. Open DOISearch in Google Scholar

[19]. Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J., Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infectious Diseases. 2020, 20, 425–434. doi: 10.1016/S1473-3099(20)30086-4. Open DOISearch in Google Scholar

[20]. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020, 395, 10. Search in Google Scholar

[21]. Elske Sieswerda, Mark G J de Boer, Marc M J Bonten, Wim G Boersma, René E Jonkers, Roel M Aleva, Bart-Jan Kullberg, Jeroen A Schouten, Ewoudt M W van de Garde, Theo J Verheij, Menno M van der Eerden, Jan M Prins, W Joost Wiersinga, Recommendations for antibacterial therapy in adults with COVID-19 - an evidence based guideline. Clinical Microbiology and Infection. 2021, 27(1), 61–66. doi: 10.1016/j.cmi.2020.09.041.752730833010444 Open DOISearch in Google Scholar

[22]. Zafer, M.M.; El-Mahallawy, H.A.; Ashour, H.M., Severe COVID-19 and sepsis: immune pathogenesis and laboratory markers. Microorganisms. 2021, 9, 159. doi: 10.3390/microorganisms9010159.782786033445583 Open DOISearch in Google Scholar

[23]. https://www.ecdc.europa.eu/sites/default/files/documents/AMR-surveillance-EARS-Net-2017.pdf. Search in Google Scholar

[24]. Yarmol-Matusiak, E.A.; Cipriano, L.E.; Stranges, S. A comparison of COVID-19 epidemiological indicators in Sweden, Norway, Denmark, and Finland. Scandinavian Journal of Public Health, 2021, 49(1), 69–78. https://doi.org/10.1177/1403494820980264.779734933413051 Search in Google Scholar

[25]. https://www.europeanreview.org/wp/wp-content/uploads/4066-4067.pdf. Search in Google Scholar

[26]. Tosheva, E.; Yordanova, G.; Markova, E.L., Before and during the outbreak: prerequisites for the high Covid-19 mortality rate in Bulgaria. Empirical insights from share data. 2021, Vol. 8, Num Esp. Search in Google Scholar

[27]. Ivanova, S.; Mihaylova, S.; Tsvetkova, A., Methods to enhance the metabolic stability of peptide drugs. Varna Medical Forum. 2021, 10(2), 371-379. Search in Google Scholar

[28]. Mihaylova, S.; Tsvetkova, A.; Arnaoudova, M.; Todorova, A.; Petkova, V.; Dimitrov, M.; Manova, M.; Savova, Al., Current issues regarding approved peptide and protein drugs in Bulgaria. World Journal of Pharmacy and Pharmaceutical Sciences. 2020, 7(4), 708-717. Search in Google Scholar

[29]. Dimitrova, D., Lambev, M.; Hristova, A.; Mihaylova, S.; Valcheva-Kuzmanova, S.; Pajpanova, T., Antimicrobial peptides (amps) - a potential solution against microbial resistance. Varna Mrdical Forum. 2018, 7(3), 195-202. Search in Google Scholar

[30]. Mihaylova, S. Solid-phase peptide synthesis (SPPS). Varna Medical Forum. 2017, Vol. 6.10.14748/vmf.v6i1.3445 Search in Google Scholar

[31]. Petkova, N.; Arabadzhieva, R.; Vassilev, D.; Gencheva, G.; Tumbarski, Y.; Ignatova-Ivanova, Ts.; Ibryamova, S.; Todorova, M.; Koleva, M.; Denev, P., Physicochemical Characterization and Antimicrobial Properties of Inulin Acetate Obtained by Microwave-Assisted Synthesis. Journal of Renewable Materials, 2020, 8(4), 365-381.10.32604/jrm.2020.09292 Search in Google Scholar

[32]. Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.-M., Teicoplanin: an alternative drug for the treatment of COVID-19? International Journal of Antimicrobial Agents. 2020, 55. doi: 10.1016/j.ijantimicag.2020.105944.710262432179150 Open DOISearch in Google Scholar

[33]. European Antimicrobial Resistance Surveillance Network (EARS-Net) An agency of the European Union. www.ecdc.europa.eu/en. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo