Open Access

Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C


Cite

[1]. Pitzer, K.S., Thermodynamics of electrolytes. I. Theoretical and general equations. J. Phys. Chem.,1973, 77, 268-277.10.1021/j100621a026Search in Google Scholar

[2]. Pitzer, K.S., Theory: ion interaction approach. In R.M. Pytkowicz, (ed.), Activity coefficients in electrolyte solutions, CRC Press, Inc., Boca Raton, Florida, 1979, 1, 157-208.Search in Google Scholar

[3]. Harvie, C.E., Weare, J.H., The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-CI-SO4-H2O system from zero to high concentration at 25°C. Geochim. Cosmochim. Acta, 1980, 44, 981-997.10.1016/0016-7037(80)90287-2Search in Google Scholar

[4]. Harvie, C.E., Moller, N., Weare, J.H., The prediction of mineral solubilities in natural waters: the Na-K-Ca-Mg-H-CI-SO4-OH-CO3-HCO3-CO2-H2O system to high ionic strength at 25°C. Geochim. Cosmochim. Acta, 1984, 48, 723-751.10.1016/0016-7037(84)90098-XSearch in Google Scholar

[5]. Christov, C., Thermodynamic of formation of double salts and mixed crystals from aqueous solutions. J. Chem. Thermodyn., 2005, 37, 1036-1060.10.1016/j.jct.2005.01.008Search in Google Scholar

[6]. Greenberg, J.P., Moller, N., The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C. Geochim. Cosmochim. Acta, 1989, 53, 2503-2518.10.1016/0016-7037(89)90124-5Search in Google Scholar

[7]. Christov, C., Moller, N., A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature, Geochim.Cosmochim. Acta,2004, 68, 1309-1331.10.1016/j.gca.2003.08.017Search in Google Scholar

[8]. Christov, C., Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O, and HCl-MgCl2-H2O systems to high concentration from 0°C to 100°C, J. Chem. Eng. Data,2009, 54, 2599-2608.10.1021/je900135wSearch in Google Scholar

[9]. Lassin, A., Christov, C., André, L., Azaroual, M., A thermodynamic model of aqueous electrolyte solution behavior and solid liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to a very high concentrations (40 molal) from 0° to 250°C, American Journal of Science,2015, 315, 204-256.10.2475/03.2015.02Search in Google Scholar

[10]. Christov, C., Dixon, A., Moller N., Thermodynamic modeling of aqueous aluminum chemistry and solid liquid equilibria to high solution concentration and temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0° to 100°C, J. Solution Chem., 2007, 36, 1495-1523.10.1007/s10953-007-9191-9Search in Google Scholar

[11]. Moller, N., Christov, C., Weare, J., Thermodynamic models of aluminum silicate mineral solubility for application to enhanced geothermal systems. In Proceedings of 31th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30 –February 2006, 1, (8 pages).Search in Google Scholar

[12]. Moller, N., Christov, C., Weare, J., Thermodynamic model for predicting interactions of geothermal brines with hydrothermal aluminum silicate minerals. In Proceedings of 32th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January, 2007, 22-24 (8 pages).Search in Google Scholar

[13]. André, L., Lassin, A., Azaroual, M., A methodology to estimate Pitzer’s interaction parameters. Geochim. Cosmochim. Acta, 2009, 73(13), Suppl.,1, A41.Search in Google Scholar

[14]. Christov, C., Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at the temperature 298.15 K., CALPHAD, 2001, 25(3), 445-454.10.1016/S0364-5916(01)00063-3Search in Google Scholar

[15]. Christov, C., Thermodynamics of formation of ammonium, sodium, and potassium alums and chromium alums, CALPHAD,2002, 26, 85-94.10.1016/S0364-5916(02)00026-3Open DOISearch in Google Scholar

[16]. Christov, C., Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums, CALPHAD,2002, 26, 341-352.10.1016/S0364-5916(02)00049-4Open DOISearch in Google Scholar

[17]. Christov, C., Thermodynamic study of the co-crystallization of ammonium, sodium and potassium alums and chromium alums, CALPHAD, 2003, 27, 153-160.10.1016/S0364-5916(03)00046-4Open DOISearch in Google Scholar

[18]. Christov, C., Ivanova, K., Velikova, S., Tanev, S., Thermodynamic study of aqueous sodium and potassium chloride and chromate systems at the temperature 298.15 K, J. Chem. Thermodynamics, 2002, 34, 987-994.10.1006/jcht.2002.0965Search in Google Scholar

[19]. Christov, C., Thermodynamic study of the KCl-K2SO4-K2Cr2O7-H2O system at the temperature 298.15K, CALPHAD, 1998, 22, 449-457.10.1016/S0364-5916(99)00004-8Search in Google Scholar

[20]. Christov, C., Thermodynamic study of the NaCl-Na2SO4-Na2Cr2O7-H2O system at the temperature 298.15 K, CALPHAD, 2001, 25, 11-17.10.1016/S0364-5916(01)00025-6Search in Google Scholar

[21]. Christov, C., Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na + K + Mg +Cl + SO4 + H2O} system at T = 298.15 K., J. Chem. Thermodyn., 2004, 36, 223-235.10.1016/j.jct.2003.11.010Search in Google Scholar

[22]. Parkhurst, D.L., Appelo, C.A.J., User’s guide to PHREEQC (version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report, 1999, 99-4259.Search in Google Scholar

[23]. Plummer, L.N., Parkhurst, D.L., Fleming, G.W., Dunkle, S.A., PHRQPITZ – A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines. U.S. Geological Survey Water-Resources Investigations Report, 1988, 88-4153.Search in Google Scholar

[24]. Pitzer, K.S., Thermodynamics of electrolytes. 5. Effect of higher-order electrostatic terms. J. Sol. Chem., 1975, 4(3), 249-265.10.1007/BF00646562Search in Google Scholar

[25]. Harvie, C.E., Theoretical investigations in geochemistry and atom surface scattering. Ph.D. Thesis, University of California at San Diego, La Jolla, Calif. (unpublished), 1982.Search in Google Scholar

[26]. Pitzer, K.S., Mayorga, G., Thermodynamics of electrolytes. 3. Activity and osmotic coefficients for 2-2 electrolytes., J. Sol. Chem., 1974, 3(7), 539-546.10.1007/BF00648138Search in Google Scholar

[27]. Mikulin, G., Voprosy Fizicheskoi Khimii Electrolytov, Izd. Khimiya. 1968Search in Google Scholar

[28]. Palmer, D.A., Wesolowski, D.J., Aluminum speciation and equilibria in aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions from 30 to 70°C. Geochim. Cosmochim. Acta, 1992, 56, 1093-1111.10.1016/0016-7037(92)90048-NSearch in Google Scholar

[29]. Farelo, F., Fernandes, C., Avelino, A., Solubilities for Six Ternary Systems: NaCl+NH4Cl+H2O, KCl+NH4Cl+H2O, NaCl+LiCl+ H2O, KCl+LiCl+H2O, NaCl+AlCl3+H2O and KCl+AlCl3+H2O at T= (298 to 333) K., J. Chem. Eng. Data, 2005, 50, 1470-1477.10.1021/je050111jSearch in Google Scholar

[30]. Sarkarov, R.A., Mironova, O.P., Solubility in the AlCl3-LiCl-NaCl-H2O System. Zh. Neorg. Khim., 1990, 35, 280-282.Search in Google Scholar

[31]. Kim, H.T., Frederick, W.J., Evaluation of ion interaction parameters of aqueous electrolytes at 25°C. 1. Single salt parameters. J. Chem. Eng. Data, 1988, 33, 177-184.10.1021/je00052a035Search in Google Scholar

[32]. Tanaka, M., Tamagawa, T., Hamada, Y., Estimation of activities in the aqueous solution systems of HCl-CuCl2 and HCl-FeCl3 using the Pitzer method. Materials Transactions, JIM, 1992, 33(4), 391-399.10.2320/matertrans1989.33.391Open DOISearch in Google Scholar

[33]. Millero, F.J., Pierrot, D., The activity coefficients of Fe(III) hydroxide complexes in NaCl and NaClO4 solutions. Geochim. Cosmochim. Acta, 2007, 71, 4825–4833.10.1016/j.gca.2007.08.005Search in Google Scholar

[34]. Marion, G.M., Kargel, J.S., Catling, D.C., Modeling ferrous–ferric iron chemistry with application to martian surface geochemistry. Geochim. Cosmochim. Acta, 2008, 72, 242–266.10.1016/j.gca.2007.10.012Search in Google Scholar

[35]. André, L., Christov, C., Lassin, A., Azaroual, M., Thermodynamic behaviour of FeCl3-H2O and HCl-FeCl3-H2O systems – A Pitzer model at 25°C. Procedia Earth and Planetary Science, 2013, 7, 14-18.10.1016/j.proeps.2013.03.113Search in Google Scholar

[36]. Kangro, W., Groeneveld, A., Konzentrierte wäßrige Lösungen, I., Z Phys Chem Neue Folge (Frankfurt am Main), 1962, 32, 110-126.10.1524/zpch.1962.32.1_2.110Search in Google Scholar

[37]. Rumyantsev, A.V., Hagemann, S., Moog, H.C., Isopiestic investigation of the systems Fe2(SO4)3–H2SO4–H2O, FeCl3–H2O, and Fe(III)–(Na, K, Mg, Ca)Cln–H2O at 298.15 K, Z Phys Chem, 2004, 218, 1089–1127.10.1524/zpch.218.9.1089.41670Search in Google Scholar

[38]. Blanc, P., Lassin, A., Piantone, P., THERMODDEM a database devoted to waste minerals. BRGM (Orléans, France)., 2007, http://thermoddem.brgm.frSearch in Google Scholar

[39]. Hinrichsen, F.W., Sachsel, E., Z. Physik. Chem., 1904-05, 50, 81-99. Data given in Linke (1965).10.1515/zpch-1905-5005Search in Google Scholar

[40]. Atbir, A., Boukbir, L., El Hadek, M., Cohen-Adad, R., Etude du diagramme polythermique du système ternaire NaCl-FeCl3-H2O de 5 à 50°C. J. Therm. Anal. Calorim., 2000, 62, 203-209.10.1023/A:1010179215486Search in Google Scholar

[41]. Christov, C., Thermodynamic study of aqueous sodium, potassium and chromium chloride systems at the temperature 298.15 K, J. Chem. Thermodynamics,2003, 35, 909-917.10.1016/S0021-9614(03)00042-9Search in Google Scholar

[42]. Malquori, G., System AlCl3-KCl-HCl-H2O at 25°. Gazz. Chim. Ital., 1927, 57, 661-662; 665. Data given in Linke (1965).Search in Google Scholar

[43]. Mason, C., The Osmotic and Activity Coefficients of Trivalent Chlorides in Aqueous Solution at 25°. J. Amer. Chem. Soc., 1940, 63, 220-223.10.1021/ja01846a051Search in Google Scholar

[44]. Linke, W., Solubilities Inorganic and Metal-Organic Compounds (4th ed.), 1965, Vols 1 and 2, American Chemical Society, Washington.Search in Google Scholar

eISSN:
2367-5144
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics