Open Access

Application of the Obstacle Vector Field Method for Trajectory Planning of a Planar Manipulator in Simulated Microgravity


Cite

Basmadji F.L., Chmaj G., Rybus T., Seweryn K. (2019) Microgravity testbed for the development of space robot control systems and the demonstration of orbital maneuvers, Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 111763V, Wilga, Poland. BasmadjiF.L. ChmajG. RybusT. SewerynK. 2019 Microgravity testbed for the development of space robot control systems and the demonstration of orbital maneuvers Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 111763V, Wilga, Poland Search in Google Scholar

Benevides J.R., Grassi V. (2015) Autonomous path planning of free-floating manipulators using RRT-based algorithms, Proc. 12th Latin American Robotics Symposium and 3rd Brazilian Symposium on Robotics (LARS-SBR), Uberlandia, Minas Gerais, Brazil, 139–144. BenevidesJ.R. GrassiV. 2015 Autonomous path planning of free-floating manipulators using RRT-based algorithms Proc. 12th Latin American Robotics Symposium and 3rd Brazilian Symposium on Robotics (LARS-SBR) Uberlandia, Minas Gerais, Brazil 139 144 Search in Google Scholar

Biesbroek R., Innocenti L., Wolahan A., Serrano S.M. (2017) e. Deorbit – ESA's active debris removal mission, Proc. 7th European Conference on Space Debris, Darmstadt, Germany. BiesbroekR. InnocentiL. WolahanA. SerranoS.M. 2017 e. Deorbit – ESA's active debris removal mission Proc. 7th European Conference on Space Debris Darmstadt, Germany Search in Google Scholar

Biesbroek R., Aziz S., Wolahan A., Cipolla S., Richard-Noca M., Piguet L. (2021) The Clearspace-1 mission: ESA and Clearspace team up to remove debris, Proc. 8th European Conference on Space Debris, Darmstadt, Germany. BiesbroekR. AzizS. WolahanA. CipollaS. Richard-NocaM. PiguetL. 2021 The Clearspace-1 mission: ESA and Clearspace team up to remove debris Proc. 8th European Conference on Space Debris Darmstadt, Germany Search in Google Scholar

Bonnal C., Ruault J.M., Desjean M.C. (2013) Active debris removal: Recent progress and current trends, Acta Astronautica, Vol. 85, 51–60. BonnalC. RuaultJ.M. DesjeanM.C. 2013 Active debris removal: Recent progress and current trends Acta Astronautica 85 51 60 Search in Google Scholar

Dubowsky S., Papadopoulos E. (1993) The kinematics, dynamics, and control of free-flying and free-floating space robotic systems, IEEE Transactions on Robotics and Automation, Vol. 9, No. 5, 531–543. DubowskyS. PapadopoulosE. 1993 The kinematics, dynamics, and control of free-flying and free-floating space robotic systems IEEE Transactions on Robotics and Automation 9 5 531 543 Search in Google Scholar

Elahres M., Fonte A., Poisson G. (2021) Evaluation of an artificial potential field method in collision-free path planning for a robot manipulator, Proc. 2nd International Conference on Robotics, Computer Vision and Intelligent Systems, Valletta, Malta, 92–102. ElahresM. FonteA. PoissonG. 2021 Evaluation of an artificial potential field method in collision-free path planning for a robot manipulator Proc. 2nd International Conference on Robotics, Computer Vision and Intelligent Systems Valletta, Malta 92 102 Search in Google Scholar

Estable S., Pruvost C., Ferreira E., Telaar J., Fruhnert M., et al. (2020) Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e.deorbit Consolidation Phase study, Journal of Space Safety Engineering, Vol. 7, No. 1, 52–66. EstableS. PruvostC. FerreiraE. TelaarJ. FruhnertM. 2020 Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e.deorbit Consolidation Phase study Journal of Space Safety Engineering 7 1 52 66 Search in Google Scholar

Flores-Abad A., Ma O., Pham K., Ulrich S. (2014) A review of space robotics technologies for on-orbit servicing, Progress in Aerospace Sciences, Vol. 68, 1–26. Flores-AbadA. MaO. PhamK. UlrichS. 2014 A review of space robotics technologies for on-orbit servicing Progress in Aerospace Sciences 68 1 26 Search in Google Scholar

Gao X., Jia Q., Sun H., Chen G. (2011) Research on path planning for 7-DOF space manipulator to avoid obstacle based on A* algorithm, Sensor Letters, Vol. 9, No. 4, 1515–1519. GaoX. JiaQ. SunH. ChenG. 2011 Research on path planning for 7-DOF space manipulator to avoid obstacle based on A* algorithm Sensor Letters 9 4 1515 1519 Search in Google Scholar

Junkins J.L., Schaub H. (1997) An instantaneous eigenstructure quasivelocity formulation for nonlinear multibody dynamics, The Journal of the Astronautical Sciences, Vol. 45, No. 3, 279–295. JunkinsJ.L. SchaubH. 1997 An instantaneous eigenstructure quasivelocity formulation for nonlinear multibody dynamics The Journal of the Astronautical Sciences 45 3 279 295 Search in Google Scholar

Khatib O. (1986) The potential field approach and operational space formulation in robot control, In: Narendra K.S. (ed.), Adaptive and Learning Systems, Springer, Boston, 367–377. KhatibO. 1986 The potential field approach and operational space formulation in robot control In: NarendraK.S. (ed.), Adaptive and Learning Systems Springer Boston 367 377 Search in Google Scholar

Kindracki J., Tur K., Paszkiewicz P., Mężyk Ł., Boruc Ł., Wolański P. (2017) Experimental research on low-cost cold gas propulsion for a space robot platform, Aerospace Science and Technology, Vol. 62, 148–157. KindrackiJ. TurK. PaszkiewiczP. MężykŁ. BorucŁ. WolańskiP. 2017 Experimental research on low-cost cold gas propulsion for a space robot platform Aerospace Science and Technology 62 148 157 Search in Google Scholar

Kowalczyk W., Michałek M., Kozłowski K. (2012) Trajectory tracking control with obstacle avoidance capability for unicycle-like mobile robot, Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 60, No. 3, 537–546. KowalczykW. MichałekM. KozłowskiK. 2012 Trajectory tracking control with obstacle avoidance capability for unicycle-like mobile robot Bulletin of the Polish Academy of Sciences: Technical Sciences 60 3 537 546 Search in Google Scholar

Lin C.C., Chuang J.H. (2003) Potential-based path planning for robot manipulators in 3-D workspace, Proc. IEEE International Conference on Robotics and Automation (ICRA'2003), Taipei, Taiwan, vol. 3, 3353–3358. LinC.C. ChuangJ.H. 2003 Potential-based path planning for robot manipulators in 3-D workspace Proc. IEEE International Conference on Robotics and Automation (ICRA'2003) Taipei, Taiwan 3 3353 3358 Search in Google Scholar

Liou J.C., Johnson N.L., Hill N.M. (2010) Controlling the growth of future LEO debris populations with active debris removal, Acta Astronautica, Vol. 66, No. 5–6, 648–653. LiouJ.C. JohnsonN.L. HillN.M. 2010 Controlling the growth of future LEO debris populations with active debris removal Acta Astronautica 66 5–6 648 653 Search in Google Scholar

Masoud A.A., Al-Shaikhi A. (2015) Time-sensitive, sensor-based, joint planning and control of mobile robots in cluttered spaces: A harmonic potential approach, Proc. 54th IEEE Conference on Decision and Control (CDC'2015), Osaka, Japan, 2761–2766. MasoudA.A. Al-ShaikhiA. 2015 Time-sensitive, sensor-based, joint planning and control of mobile robots in cluttered spaces: A harmonic potential approach Proc. 54th IEEE Conference on Decision and Control (CDC'2015) Osaka, Japan 2761 2766 Search in Google Scholar

Masoud A.A., Bayoumi M.M. (1993) Robot navigation using the vector potential approach, Proc. IEEE International Conference on Robotics and Automation (ICRA'1993), Atlanta, GA, USA, vol. 1, 805–811. MasoudA.A. BayoumiM.M. 1993 Robot navigation using the vector potential approach Proc. IEEE International Conference on Robotics and Automation (ICRA'1993) Atlanta, GA, USA 1 805 811 Search in Google Scholar

Misra G., Bai X. (2017) Optimal path planning for free-flying space manipulators via sequential convex programming, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 11, 3019–3026. MisraG. BaiX. 2017 Optimal path planning for free-flying space manipulators via sequential convex programming Journal of Guidance, Control, and Dynamics 40 11 3019 3026 Search in Google Scholar

Mukherjee R., Nakamura Y. (1991) Nonholonomic redundancy of space robots and its utilization via hierarchical liapunov functions, Proc. American Control Conference (ACC'1991), Boston, USA, 1491–1496. MukherjeeR. NakamuraY. 1991 Nonholonomic redundancy of space robots and its utilization via hierarchical liapunov functions Proc. American Control Conference (ACC'1991) Boston, USA 1491 1496 Search in Google Scholar

Murtaza A., Pirzada S.J.H., Xu T., Jianwei L. (2020) Orbital debris threat for space sustainability and way forward, IEEE Access, Vol. 8, 61000–61019. MurtazaA. PirzadaS.J.H. XuT. JianweiL. 2020 Orbital debris threat for space sustainability and way forward IEEE Access 8 61000 61019 Search in Google Scholar

Pamosoaji A.K., Hong K.S. (2013) A path-planning algorithm using vector potential functions in triangular regions, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 43, No. 4, 832–842. PamosoajiA.K. HongK.S. 2013 A path-planning algorithm using vector potential functions in triangular regions IEEE Transactions on Systems, Man, and Cybernetics: Systems 43 4 832 842 Search in Google Scholar

Park M.G., Lee M.C. (2003) A new technique to escape local minimum in artificial potential field based path planning, KSME International Journal, Vol. 17, 1876–1885. ParkM.G. LeeM.C. 2003 A new technique to escape local minimum in artificial potential field based path planning KSME International Journal 17 1876 1885 Search in Google Scholar

Ratajczak J., Tchoń K. (2020) Normal forms and singularities of non-holonomic robotic systems: A study of free-floating space robots, Systems and Control Letters, Vol. 138, 104661. RatajczakJ. TchońK. 2020 Normal forms and singularities of non-holonomic robotic systems: A study of free-floating space robots Systems and Control Letters 138 104661 Search in Google Scholar

Rybus T. (2018) Obstacle avoidance in space robotics: Review of major challenges and proposed solutions, Progress in Aerospace Sciences, Vol. 101, 31–48. RybusT. 2018 Obstacle avoidance in space robotics: Review of major challenges and proposed solutions Progress in Aerospace Sciences 101 31 48 Search in Google Scholar

Rybus T. (2020) Point-to-point motion planning of a free-floating space manipulator using the Rapidly-exploring Random Trees (RRT) method, Robotica, Vol. 38, No. 6, 957–982. RybusT. 2020 Point-to-point motion planning of a free-floating space manipulator using the Rapidly-exploring Random Trees (RRT) method Robotica 38 6 957 982 Search in Google Scholar

Rybus T. (2022) The Obstacle Vector Field (OVF) method for collision-free trajectory planning of free-floating space manipulator, Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 70, No. 2, e140691. RybusT. 2022 The Obstacle Vector Field (OVF) method for collision-free trajectory planning of free-floating space manipulator Bulletin of the Polish Academy of Sciences: Technical Sciences 70 2 e140691 Search in Google Scholar

Rybus T., Seweryn K. (2016) Planar air-bearing microgravity simulators: review of applications, existing solutions and design parameters, Acta Astronautica, Vol. 120, 239–259. RybusT. SewerynK. 2016 Planar air-bearing microgravity simulators: review of applications, existing solutions and design parameters Acta Astronautica 120 239 259 Search in Google Scholar

Rybus T., Seweryn K. (2018) Zastosowanie metody sztucznych pól potencjału do planowania trajektorii manipulatora satelitarnego [in polish: Application of the artificial potential field method for trajectory planning of space manipulator], In: Tchoń K., Zieliński C. (eds.), Prace Naukowe Politechniki Warszawskiej: Elektronika, Vol. 196, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 61–74. RybusT. SewerynK. 2018 Zastosowanie metody sztucznych pól potencjału do planowania trajektorii manipulatora satelitarnego [in polish: Application of the artificial potential field method for trajectory planning of space manipulator] In: TchońK. ZielińskiC. (eds.) Prace Naukowe Politechniki Warszawskiej: Elektronika 196 Oficyna Wydawnicza Politechniki Warszawskiej Warszawa 61 74 Search in Google Scholar

Rybus T., Wojtunik M., Basmadji F.L. (2022) Optimal collision-free path planning of a free-floating space robot using spline-based trajectories, Acta Astronautica, Vol. 190, 395–408. RybusT. WojtunikM. BasmadjiF.L. 2022 Optimal collision-free path planning of a free-floating space robot using spline-based trajectories Acta Astronautica 190 395 408 Search in Google Scholar

Rybus T., Seweryn K., Oleś J., Basmadji F.L., Tarenko K., Moczydłowski R., Barciński T., Kindracki J., Mężyk Ł., Paszkiewicz P., Wolański P. (2019) Application of a planar air-bearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator, Acta Astronautica, Vol. 155, 211–229. RybusT. SewerynK. OleśJ. BasmadjiF.L. TarenkoK. MoczydłowskiR. BarcińskiT. KindrackiJ. MężykŁ. PaszkiewiczP. WolańskiP. 2019 Application of a planar air-bearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator Acta Astronautica 155 211 229 Search in Google Scholar

Seweryn K., Banaszkiewicz M. (2008) Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver, Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA-GNC’2008), Honolulu, HI, USA. SewerynK. BanaszkiewiczM. 2008 Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA-GNC’2008) Honolulu, HI, USA Search in Google Scholar

Shan M., Guo J., Gill E. (2016) Review and comparison of active space debris capturing and removal methods, Progress in Aerospace Sciences, Vol. 80, 18–32. ShanM. GuoJ. GillE. 2016 Review and comparison of active space debris capturing and removal methods Progress in Aerospace Sciences 80 18 32 Search in Google Scholar

Umetani Y., Yoshida K. (1989) Resolved motion rate control of space manipulators with generalized Jacobian matrix, IEEE Transactions on Robotics and Automation, Vol. 5, No. 3, 303–314. UmetaniY. YoshidaK. 1989 Resolved motion rate control of space manipulators with generalized Jacobian matrix IEEE Transactions on Robotics and Automation 5 3 303 314 Search in Google Scholar

Volpe R., Khosla P. (1987) Artificial potentials with elliptical isopotential contours for obstacle avoidance, Proc. 26th IEEE Conference on Decision and Control (CDC'1987), Los Angeles, CA, USA, 180–185. VolpeR. KhoslaP. 1987 Artificial potentials with elliptical isopotential contours for obstacle avoidance Proc. 26th IEEE Conference on Decision and Control (CDC'1987) Los Angeles, CA, USA 180 185 Search in Google Scholar

Wang M., Luo J., Fang J., Yuan J. (2018) Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm, Advances in Space Research, Vol. 61, No. 6, 1525–1536. WangM. LuoJ. FangJ. YuanJ. 2018 Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm Advances in Space Research 61 6 1525 1536 Search in Google Scholar

Xu Y. (1993) The measure of dynamic coupling of space robot systems, Proc. IEEE International Conference on Robotics and Automation (ICRA'1993), Atlanta, GA, USA, vol. 3, 615–620. XuY. 1993 The measure of dynamic coupling of space robot systems Proc. IEEE International Conference on Robotics and Automation (ICRA'1993) Atlanta, GA, USA 3 615 620 Search in Google Scholar

Yanoshita Y., Tsuda S. (2009) Space Robot Path Planning for Collision Avoidance, Proc. International MultiConference of Engineers and Computer Scientists (IMECS'2009), Hong Kong. YanoshitaY. TsudaS. 2009 Space Robot Path Planning for Collision Avoidance Proc. International MultiConference of Engineers and Computer Scientists (IMECS'2009) Hong Kong Search in Google Scholar

Yoshida K. (1994) Space robotics research activity with Experimental Free-Floating Robot Satellite (EFFORTS) simulators, In: Yoshikawa, T. and Miyazaki, F. (eds.), Experimental Robotics III. Lecture Notes in Control and Information Sciences, Vol. 200. Springer, Berlin, Heidelberg, 561–578. YoshidaK. 1994 Space robotics research activity with Experimental Free-Floating Robot Satellite (EFFORTS) simulators In: YoshikawaT. MiyazakiF. (eds.) Experimental Robotics III. Lecture Notes in Control and Information Sciences 200 Springer Berlin, Heidelberg 561 578 Search in Google Scholar

eISSN:
2083-6104
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other